Category Archives: Satellite

RTL-SDR Active Patch Antenna

Weather-proof: and this is only one of the benefits of this nice tool.

Since August 2021, the RTL-SDR Active Patch Antenna delights the community worldwide. It is small, yet highly efficient. With RTL-SDR Dongle and some software, it combines to a surprisingly high performance receiving post for INMARSAT, IRIDIUM (which I first used with a mobile phone 20 years ago on a tour through Mongolia and China with stunning quality), and GPS – all for just about 100 US-$.

Plug the USB stick into your PC, connect the patch antenna to the stick’s by a cable and set it on a flexible tripod (all contained in the set!), and the sky becomes open. In the screenshot below, I used the nuandRF to show at least half of the bandwidth of the antenna, because this SDR covers 60 MHz:

The 60MHz wide window of the nuand bladeRF SDR shows half of the bandwidth and sensitivity of the RTL-SDR Patch antenna. Caveat: With the bandwidth of the antenna being nearly 140MHz and the bandwidth of the SDR only ca. 60MHz, this screenshot still doesn’t show the complete performance of the antenna. The seemingly (sic!) reduced sensitivity at the lower and upper end of the signal/noise is due to the receiver, not the antenna!

Aero makes a good start with powerful signals and free software JAERO which can also run in multi instances to cover all the channels in parallel.

In the upper window you see the SDR GUI, namely free SDRC software. It shows some aero channels with their signal-to-noise radio, or SNR, achieved with the active patch antenna and the RTL-SDR dongle. The two windows at the bottom show the JAERO decoder in action on a 1200bps channel.

You may also set sails for some maritime experience with the std-C Decoder (full version: 55 US-$). It even visualizes e.g., buoys and areas (rectangle, circle and free format) a Open Street Map.

Top: a maritime satellite channel. Bottom: Safety Message for the marked area in the Gulf of Bengal, off the coast of Cuttack/India.

You may also receive the GPS C/A code signal on 1.575420GHz, and IRIDIUM on which John Bloom wrote the pageturner “Eccenctric Orbits – The Iridium Story“, which I can only highly recommend as a truly thrilling backgrounder. As low-orbiting satellites, the channel has to be handed over to another satellite after about nine minutes.

The RTL-SDR Active Patch Antenna is a great, little tool providing high SNRs at a small form factor of 17.5 x 17.5 cm. Its low noise amplifier (powered via bias tee from the SDR stick) together with the SAW filter to suppress any signals outside its passband from 1.525 to 1.660GHz shows unsurpassed performance at this price tag. It is a must, and absolutely a no-brainer. Did you miss a large suction cup to mount it on your window? Wait a minute – it is also included in the turnkey package …

INMARSAT: Decoding 12 Aero-channels in parallel


Action: Free software allows for decoding twelve INMARSAT in parallel

A recent post in Carl’s rtl-sdr-blog informed about the ebay-lability of some surplus Outernet patch antennas for just – see here. For just 29 US-$, I got this small antenna with integrated SAW filter (1525 – 1559 MHz) plus LNA. A real bait for me to jump over the limit of 30 MHz reception! Soon I fired up my AirSpy R2 receiver, providing the LNA with power supply (Bias-Tee). It worked fine, and I received a whole bunch of excellent signals by this setup.

As I wanted to receive some aircraft information, so I downloaded free JAERO decoder of Jonathan “Jonti” Olds, also from New Zealand. This fine software can be opened in many instances. In combination with the up to 24 decoders of SDR-Console V3 of Simon Brown, this modest setup turned into a multi-channel satellite reception post.


Here 12 decoders had been assigned – one on each INMARSAT channel. You see also quite good SNRs from the Outernet patch antenna.

Next steps worked as usual with the mutli-channel approach:

  • make up 12 channels in SDR-Console and tune each channel to a different signal. Mode must be USB, and as bandwidth I choose 1200 Hz for 600 bps and 2400 Hz for 1200 bps channels. That’s a bit wider than necessary, but doing so there is some room for the AFC in JAERO decoder always to stick to the signal even if the SDR should drift a bit over 24 h or so
  • The output of each channel is then routed to a different Virtual Audio Cable, or VAC 1-12.
  • Then you have to install twelve instances of JAERO software in different folders, e.g. JAERO 1-12. You should name each JAERO.exe file accordingly, e.g. JAERO_1.exe to JAERO12.exe.
  • Open JAERO_1.exe, assign its input to VAC 1, and set the matching speed of the signal. If all is ok, you will be rewarded by a sharp phase constellation, and soon decoding will start.
  • Repeat the above steps until you have reached JAERO_12.exe, connected to VAC 12.


The “Matrix” of SDR-Console V3 shows the twelve channels with different signal strengths and width, depending on the data rate (600bps/narrow, 1200bps/wide).

The result can bee seen from the screenshot at the top of this page. The whole setup ran stable and unattended for hours.

Thanks for all smart people having developed the smart software and hardware!