Steckt sie alle in die Tasche: Reuters “Pocket”


Burkhard Reuter mit seinem “Pocket”: Eine Entwicklung, auf die er stolz sein kann

Wo eigentlich bleiben die Weltempfänger? Die Spitzenklasse kommt heute nicht aus Japan und schon gar nicht mehr aus den USA oder aus Fürth, sondern aus: Dessau. Dort hat Burkhard Reuter unter anderem seinen Pocket entwickelt. Das ist ein Taschenempfänger, den es auch mit Sendeteil gibt. Seine Leistung ist absolute Spitzenklasse. Sein Konzept folgt einem ab initio selbst entwickelten und “Spectrum Based Signal Processing” genannten Algorithmus. Alles an diesem Gerät ist schlichtweg außergewöhnlich: von der Leistung über die Wertigkeit bis zum Preis. Für die Titelgeschichte der Mai-Ausgabe 2017 der Fachzeitschrift FUNKAMATEUR habe ich Burkhard Reuter in seiner Werkstatt besucht, mir seinen Weg und sein Konzept erläutern lassen sowie seinen Receiver auf Herz und Nieren getestet.

Where have all the world band radios gone? The most recent one – and probably the best ever produced – emerged out of the workshop of Burkhard Reuter (pictured above) from Dessau/Germany, the city of Bauhaus fame. For the cover story (May, 2017) of the German FUNKAMATEUR magazine, I visited him and did an in-depth test of this smart receiver, following his unique “Spectrum Based Signal Processing” algorithm. His Pocket turned out to surpass reception quality of each and every world band radio before, scratching the performance of even professional table top receivers. Some versions of it also include a ham radio transmitter (QRP). Already another modern classics from the Bauhaus city …


Airspy & SpyVerter: An Excellent Performer on HF


24 broadcast channels demodulated in parallel on shortwave – and Airspy plus SpyVerter do need just a quarter of PC’s power!

Always being interested in SDRs with remarkable HF performance, Airspy and the matching up-converter, namely SpyVerter, attracted me. It is a 10-bit SDR, covering 24 MHz to 1.800 MHz (just Airspy) plus 1 kHz to 60 MHz by help of SpyVerter (+120 MHz). Both come in solid metal cases.

I did test this combo in detail on HF, i.e. under 30 MHz. It proofs to be a sensitive setup with a surprisingly dynamic range, ending up in clear recpetion of up to a nearly 10 MHz wide band. This may be recorded and eventually played “as live”.

The test has been published on 19 pages plus 25 instructive illustrations, and the PDF can be dowloaded here. It is a real hands-on test in real practice. This includes also weak signal reception of data, demodulating and decoding of 24 HFDL airband channels in parallel, DRM and FAX decoding (KVM70/Honolulu) and reception of Auckland VOLMET von 6.679 kHz via long path.

The result ist simply stunning: if you are in search for a “low cost, high perfomance SDR”, that’s exactly is it. Yes – Youssef and his team advertise it with this claim, but it is one of the rare cases where such a claim meets reality. Be surprised, become convinced!

French version: Bernard Malet was so kind to translate the paper into French, merci!
Téléchargez ici, s’il vous plait.

LimeSDR: First Experiences on HF

One hour in the 20 m ham radio band with LimeSDR and SpyVerter, zoomed out of a one hour’s recording of 30 MHz width. Antenna: quadloop of 20 m circumference.

LimeSDR is a Crowdsupply project – delivering an SDR which covers 100 kHz to 3.8 GHz with bandwdiths of up to 2 x 30 MHz. I was interested almost exclusively in the range 100 kHz to 30 MHz. The board arrived on March 17th, and I already have done some tests with it. From these very first results & a recommendation:

  • Installing is easy (W10), if you follow the instructions.
  • Without modification, LimeSDR is simply useless on HF. It’s deaf near to a dummy load.
  • The producer recommends a “modification” by just removing one SMD. Then some life came into this range. But it was hard to sort the ghost stations from the real ones.
  • Even a low-pass filter from Heros didn’t helped that much.
  • Just before selling the board on ebay, I connected the antenna first with Spyverter – a state-of-the-art up-converter with an IIP3 of +35 dBm, transferring the band of 0 – 30 MHz to 120 – 150 MHz. This is a range, where LimeSDR sees some light.

So, if you are disappointed by the near-non HF performance of naked LimeSDR: an able up-converter will change the game. Recording and sonagrams had been made with V3.

30 MHz live with LimeSDR and SpyVerter shows that it generally works. Same antenna as above.

“Ghost signals” make it sometimes difficult to distinguish them from real signals. This sonagram has been made with SpyVerter. Broadcast stations are easy to find out (in their majority). But it gets difficult to sort the ghost stations from the few real ones in the left part.


Play it again, HAARP

Alaskan station HAARP is re-activated for some scientific purposes in late February, 2017. I received them on 2.800 kHz as well as on 3.300 kHz with carriers showing their scheduled pattern. Alas, reception was too weak to make out any modulation. See screenshots below, containing all sufficient data like time, frequency, resolution etc. Reception has been done in Northern Germany with FDM-S2 by ELAD at a quadloop antenna of 20 m circumference.

Medium Wave Adventures


China & Taiwan, Korea, Afghanistan – “That’s my desire” [studio take by Chuck Berry; November 19, 1958]

Eventually, I couldn’t resist the siren’s songs of Christoph, OE2CRM. These consist of breathtaking audio files of some marvels he received at his unique remote receiving station.

Throughout my DX life, I had been an addict more to HF than to medium wave. But Christoph’s results made the trick to convince me also trying this band. Still slowly groping forward in this band like a white sticker, I liked even the first results a bit. Please find below a hopefully growing collection of audio clips. They were received with my loop of 20 m circumference, mostly with Wellbrook’s active head ALA100LN for these large aperture loops. Receiver is mainly Perseus or Elad’s FDM-S2. They all were received in Northern Germany. Let’s go, and don’t forget to to click the READ MORE button for – listening to much more!

1610 kHz CAN  CHHA – La Voces Latinas in Spanish, Toronto, 6,25 kW, 2017-01-09, 06:23 UTC

1575 kHz THA  VoA with ID/Yankee Doodle, Ban Phachi, 1000/500 kW, 2016-11-29, 15:00 UTC

1566 kHz KOR  HLAZ FEBC in Chinese, Jeju, 250 kW, 2016-11-20, 14:44 UTC

1557 kHz TWN  Radio Taiwan International, “RTI News”, Kouhu, 300 kW, 2016-11-20, 15:57 UTC

1521 kHz CHN  China Radio International in Russian, Ürümqi, 500 kW, 2016-11-20, 14:00 UTC

1512 kHz IRN  IRIB Radio Ardabil in Farsi, Ardabil, 50 kW, 2016-12-10, 16:30 UTC

1510 kHz USA-MA  WMEX, Boston, 50 kW, 2016-12-07, 07:00 UTC

Read more

SDR Transceiver Zeus ZS-1 and Digimode Software FLDIGI

A strong combination: State-of-the-Art SDR transceiver Zeus ZS-1 and digimode software FLDIGI. with this insutrction, the combination of both with audio in/out, keying and freqeuncy transfer is easy.

A strong combination: State-of-the-Art SDR transceiver Zeus ZS-1 and digimode software FLDIGI. With a step-by-step instruction, the combination of both with audio in/out, keying and freqeuncy transfer is easy.

With software-defined radio or SDRs, also ham radio has made a considerable leap forward. SDR transceivers are around for many years but failed to have a major impact until now. Among these transceivers, Russian and German-made Zeus ZS-1 is an outstanding example, covering each amateur radio band from 160 m to 10 m with up to 15 watt output. It received enthusiastic reviews around the world, e.g. by RadCOM of RSGB and QST of ARRL with excellent ratings.

Recently, I again bought on ZS-1 to re-vitalize my amateur radio activity with also again a focus on QRP and digital modes. For this purpose, ZS-1 with its outstanding clean signal under transmit and Receiver plus tidy interface is almost ideal. BUt Ehen I needed a fool-proof instruction to set up the combination of ZS-1 and a multimode software like FLDIGI, I didn’t found what I need: a step-by-step approach.

This was the reason for writing such an instruction by myself. I concentrate on the combination of ZS-1 and FLDIGI which in a PDF is laid out in detail and with instructive screenshots. In an appendix, I go also through some other digimode software like FreeDV and EasyPal. To my own disappointment, I couldn’t get work WSJT/WSPR. So your help is very appreciated!

You can download the 20-paged PDF with its 24 screenshots right here.


PC-HFDL Display: Receive, decode and analyze the biggest net on HF!

HFDL is a net for data communications between airplanes and ground. The results can be shown on Google Earth . This screenshot shows a part of 29.000+ entries, received and processed on August 15th, 2016.

HFDL is a net for data communications between airplanes and ground. The results can be shown on Google Earth. This screenshot shows a part of 29.000+ entries, received and processed on August 15th, 2016.


Communications between air and ground is mostly done on VHF, UHF and SHF. But if an aircraft is out of reach of a ground station station due to the limited “radio horizon” of these bands, it has to maintain communications by either satellite or HF. This HFDL net is in fact the most massive professional user of HF right now. Within 24 hours, I get more than 40.000 live messages with a modest equipment.

With his software Display Launcher, Mike Simpson from Australia provides a most valuable tool to analyze up to nine channels in parallel. His software also draws positions and routes onto Google Earth. Mike has spent much energy on coping with many inconsistencies of transmitted data before it all really goes smoothly.

This free software is the vital part of a monitoring project to receive, demodulate and analyze live up to nine HFDL channels in parallel. Other ingredients you need is a software-defined radio (SDR), nine virtual audio cables (in fact, a piece of software) and a decoder software. Don’t forget an antenna and a PC …

This setup comprises a semi-professional monitoring station which will allow you to receive and track many of the nearly 3.000 airplanes using HFDL. This also covers the military, business jets, helicopters and some other delicate users. It maybe used as an important complement to Flightradar24’s web service, whenever their VHF/UHF/SHF-based net is out of range of the aircraft. This is particularly true over vast water masses like oceans and sparsely populated land masses. Furthermore, Flightradar24 erases some sensible flights from the raw material before publication on their website. This is clearly no “censorship”, but some thoughtfulness in regard to those countries where reception and publication of HFDL data is more tolerated than explicitly encouraged by the government.

In a 9-page PDF, I published a step-by-step recipe on how to set up such an HF monitoring station for up to nine parallel HFDL channel. You can download it here.

« Older Entries