TDoA on KiwSDR Net: Direction Finding for All!

TDoA7_Saissac

Four receivers are nailing Saissac as transmitter site of STANAG 4285 transmission on 12.666,5 kHz on July 16th, 2018, 15:45 UTC.

A dream has become true: direction finding (DF) in the range of 0 to 30 MHz for all! The method is “time difference of arrival”. This is a speaking term, and it works exactly like it says: measuring the different times of arrival of a signal at at least three different receivers and calculating the position of the transmitter.

Base is the net of KiwiSDRs. If connected to GPS, each of this SDRs is able to deliver an I/Q stream with time stamps of a very high resolution. If you compare the recordings of different receivers tuned to the same station at the same time, you will find as slight time difference from receiver to receiver. This is due to the “time of flight” from transmitter to receiver. HF is traveling 300 km per 1 millisecond – so time is distance.

However, you don’t know the absolute transmitting time on transmitters other than time signal stations. So “Time Difference on Arrival”, or TDoA, measures the time differences of arrival. The first step is to compare the I/Q streams to find at which time difference their content does correlate. From these time differences, there are calculated curves onto a map. They cross in that region, where most likely the transmitter is located – see the screenshot at the top which I did to locate the STANAG 4285 transmitter on 12.666,5 kHz.

Due to concept, most reliable results (and, hence: sharp regions where the curves meet) are achieved only with the same propagation mode prevailing at all receiving stations. This is most strictly the case on VLF and long wave, where we mostly have one and stable waveguide-like propagation. But you can achieve also stunning results on HF if you carefully choose the SDRs – see next picture.

Isso_2a

Here the broadcast station at Issoudun on 15.320 kHz has been pinpointed by G0EVX, OE5EAN and OZ1BFM receivers at 08:35 UTC. The tip of the arrow points to the actual location, just one kilometer south of the RDoA result [see scale!].


As soon as we approach skywave propagation, you must care for more or less the same propagation mode, of which a one-hop propagation (e.g. 1 x F2) should be preferred. Often even a bit bigger heat map of correlation gives a significant clue from where the transmitter is operating  see next picture.

TDoA8_RussianOFDM

An even weak and fading CIS12 signal 11.836 kHz (spectrogram at the bottom) has been reliably located on Crimea, Sevastopol area. Hence, it is most likely associated with the Russian Navy there.

The software has been developed by some smart people around Christoph Mayer who also provides detailed information on the concept of this approach on his website. It quickly has become an extension of the KiwiSDR net. This makes it very comfortable to use – if you take care of what is said above.

 

One comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s