Tag Archives: Utility DX

ALE [MIL-STD-188-141A]: Which one is the best Decoder?

This is an update from my post two days ago. I have expanded the number of test signals and added some hints.

Does your decoder read this track? Buried in noise and plagued by multipath fading, the recordings below will separate the wheat from the whaff.

Often I am asked – and sometimes even asking myself! – “Which one is the best decoder for ALE?” This means: Which one delivers the best decoding under demanding conditions?

To test this, I made a recording of twelve stations “on the air” plus one weak signal, buried in Additive White Gaussian Noise, AWGN. All signals are correctly tuned, no one invers. All were read by at leastby one of my decoders “in a row”.

To test your decoders, you should download this WAV file of 131 seconds length and play it. It can be either directly opened by some decoder, or feed it via virtual audio cable (VAC) into a decoder. I used Audacity for this.

I am as interested in the results as you are – so please drop me a line to dk8ok [at] gmx.net. I like to encourage you to try all ALE decoders you have at hand – the more, the better.

Already the first results were surprising. This concerned both, the decoding ability of the decoders and the repeatability of the test. So far, the following decoders had participated: go2monitor, Krypto500, MARS-ALE, MultiPSK, Sorcerer, and W-Code. Steve, N2CKH, had written some valuable hints to optimize his MARS-ALE software for SIGINT purposes – please see his comment.


This WAV file contains the calls of thirteen ALE stations. Download and save this file (point to the icon, press right mouse button …). Then feed it to your decoders. Copy the results and send them to me. Have fun!

Ghosts in the Air Glow: HAARP on March 26th, 2019

Just after the spring equinox, interdisciplinary artist Amanda Dawn Christie did another performance of her ionospheric transmission art project “Ghosts in the Air Glow” via the High Frequency Active Auroral Project HAARP near Gakona/Alaska. I took an HF recording of a range, covering all frequencies and times scheduled – see here. At my location, on March 26th, 2019, reception was possible only on 5.100 kHz (best), 6.900 kHz, 7.900 kHz and 8.000 kHz. Signal strength was too low to hear any modulation, but the characteristics of the signals did exactly match the schedule – see screenshots and captions below.

Receiver: Elad’s FDM-S2, Antenna: Active Dipole MD-300DX (2 x 2.5 m), Software: V3 from Simon Brown


5.100 kHz, 01:16 to 01:26 UTC, West beam, gave the best signal.
The signal on 6.900 kHz on the East beam from 01:16 to 01:26 UTC was considerably lower.
On 7.900 kHz, the signal was transmitted by an electronically rotated beam, one rotation per minute, from 01:03 to 01:09 UTC on the West beam. This is clearly seen on the the Signal window below the spectrogram.
On 7.900 kHz, the signal was transmitted by an electronically rotated beam, two rotations per minute, from 01:09:30 to 01:15:30 UTC on the West beam. This is clearly seen on the the Signal window below the spectrogram.
On 8.000 kHz, the signal was transmitted by an electronically rotated beam, one rotation per minute, from 01:03 to 01:09 UTC on the East beam. This is clearly seen on the the Signal window below the spectrogram.
On 8.000 kHz, the signal was transmitted by an electronically rotated beam, two rotations per minute, from 01:09:30 to 01:15:30 UTC on the East beam. This is clearly seen on the the Signal window below the spectrogram.

TDoA Direction Finding: First Experiences on the KiwiSDR Net

6465_5

With some iteration, as described in the PDF, the former unknown site of a CIS-12 transmission on 6.465 kHz has been disclosed as the Russian Navy from Baltysk, Kaliningrad.

The stunning direction finding tool on the KiwiSDR net has hit the community. Most people are enthusiastic about the new horizons, some some smart people had opened for free.

A few people, however, reported some disappointment as they couldn’t pinpoint each and every transmitter with expected high precision.

To avoid this disappointment, you have to know what you are doing. The TDoA tool for direction finding indeed delivers automatically stunning results. But you have to think a bit about the setup, and also do some iteration.

I wrapped up my first experiences with TDoA in this PDF. You may simply download it by double-clicking the link, and open it in a PDF reader. It consists of 22 pages and 37 instructive figures. I greatly stressed the practical part of direction finding with this tool – with 13 explicit case studies from 2,6 MHz to 15,6 MHz.

The idea is to have more fun by getting the most reliable results.

INMARSAT: Decoding 12 Aero-channels in parallel

Jaero12

Action: Free software allows for decoding twelve INMARSAT in parallel

A recent post in Carl’s rtl-sdr-blog informed about the ebay-lability of some surplus Outernet patch antennas for just – see here. For just 29 US-$, I got this small antenna with integrated SAW filter (1525 – 1559 MHz) plus LNA. A real bait for me to jump over the limit of 30 MHz reception! Soon I fired up my AirSpy R2 receiver, providing the LNA with power supply (Bias-Tee). It worked fine, and I received a whole bunch of excellent signals by this setup.

As I wanted to receive some aircraft information, so I downloaded free JAERO decoder of Jonathan “Jonti” Olds, also from New Zealand. This fine software can be opened in many instances. In combination with the up to 24 decoders of SDR-Console V3 of Simon Brown, this modest setup turned into a multi-channel satellite reception post.

AeroGUI

Here 12 decoders had been assigned – one on each INMARSAT channel. You see also quite good SNRs from the Outernet patch antenna.

Next steps worked as usual with the mutli-channel approach:

  • make up 12 channels in SDR-Console and tune each channel to a different signal. Mode must be USB, and as bandwidth I choose 1200 Hz for 600 bps and 2400 Hz for 1200 bps channels. That’s a bit wider than necessary, but doing so there is some room for the AFC in JAERO decoder always to stick to the signal even if the SDR should drift a bit over 24 h or so
  • The output of each channel is then routed to a different Virtual Audio Cable, or VAC 1-12.
  • Then you have to install twelve instances of JAERO software in different folders, e.g. JAERO 1-12. You should name each JAERO.exe file accordingly, e.g. JAERO_1.exe to JAERO12.exe.
  • Open JAERO_1.exe, assign its input to VAC 1, and set the matching speed of the signal. If all is ok, you will be rewarded by a sharp phase constellation, and soon decoding will start.
  • Repeat the above steps until you have reached JAERO_12.exe, connected to VAC 12.

12Matrix

The “Matrix” of SDR-Console V3 shows the twelve channels with different signal strengths and width, depending on the data rate (600bps/narrow, 1200bps/wide).

The result can bee seen from the screenshot at the top of this page. The whole setup ran stable and unattended for hours.

Thanks for all smart people having developed the smart software and hardware!

GRAVES: Reflections out of the blue

A GRAVES reflection from a meteor trail, August 21st, 2017 at 10:51 UTC. Received with FDM-S2 from Elad, a discone antenna and software V3 from Simon Brown

Undoubtly, a Graves is a fine French wine from the Bordeaux region in western France. So it is so surprise that also GRAVES is an extraordinary Radar station. It was built to detect and follow satellites and their debris. They sequentially cover from 90° to 270° azimut in five big sectors A to D, and change from sector to sector each 19,2 seconds. Each of this sector is further divided into 6 segments of 7,5° width, covered for 3,2 seconds each.

They are transmitting on 143,050 MHz. If you are in Europe and tune into 143.049,0 kHz USB, you probably will hear/see some reflections of meteors, airplanes and even spacecraft. The distance between the transmitter and my location is about 630 km, and for their southly directed transmissions, there most of the time is no direct reception.

So, if you tune into 143.049,0 kHz, you will see just a blue spectrogram: noise. If you wait for a while, some signals will appear out of this blue; see screenshot on the top. With Simon Brown’s free software Version 3 you may also take a level diagram in smallest time steps of just 50 milliseconds:

A level diagram of the meteor trail reflection from the spectrogram at the top, visualized qith QtiPlot.

This level diagram shows the big advantage of SDRs, working on the signals on HF level, rather than of audio level as with legacy radios. The latter additionally introduce e.g. noise and phase errors. Of course, you may also listen to this signal:

From this audio, in turn, you may do an audio spectrogram, possibly revealing further details of e.g. of the trilling sound like that from a ricocheting bullet: The Searchers (the 1956’er Western film by John Ford, not the British boy group from 1960 …) on VHF.

Audio spectrogram of the sound, revealing “packets” of sound which result in the trilling audio. At start, these packet show a width of about 42 milliseconds to be reduced to 37 milliseconds.

P.S. If you want to donate: my favourite Graves is from Domaine de Chevalier, blanc …

Murmansk FAX: 6.328,5 kHz, new Frequency

Murmansk_6328k5_120_576_1kShift_20170609_0450

Tune into 6330,4 kHz LSB, to get the right black/white frequencies, centered at 1.900 Hz. Shift 1.000 Hz, so 1.400 Hz = white, 2.400 Hz = black. 120 RPM/576 IOC, no APT! Received on June 9th, 2017, at 04:50 UTC.

Reports of the death of Murmansk FAX had been slightly exaggerated … After having searched for it in vain in 1Q/17, it now popped up on 6.328,5 kHz from former 6.445,5 kHz with an irregular schedule, namely at 03:30 UTC at one day and 04:50 UTC another day.

Just fair quality of both, conditions and transmitter, made it very difficult  to read the text in the upper part of this weather chart in Cyrillic, with just: Прогноз … 21 час [Prognosis … 21 hour …]. Receiver AirSPy & SpyVerter, decoder Wavecom W-Code.

Also received on June 1st, 2017, but starting at 03:30 UTC – same area, first half of the transmission heavily distorted by an RTTY signal, see below:

Murmansk_6328k5_120_576_1kShift_20170501_0330

Reception on June 1st, 2017, from 03:30 UTC on 6.328,5 kHz.

Iceberg Prognosis has been received on scheduled 8.444,1 kHz at 20:00 UTC on June 8th, 2017; see below:

8444k1_Murmansk_20170608_2000

Murmansk FAX with Iceberg Prognosis  on 8.444,1 kHz at 20:00 UTC on June 8th, 2017. Cyrillic texts not quite readable. Also received on May, 31st, 2017, same frequency, same time.

Not a trace on/near also listed 7908,8 kHz. It seems that otherwise commendable NOAA publication Worldwide Marine Radiofacsimile Broadcast Schedules is outdated regarding this station.

Play it again, HAARP

Alaskan station HAARP is re-activated for some scientific purposes in late February, 2017. I received them on 2.800 kHz as well as on 3.300 kHz with carriers showing their scheduled pattern. Alas, reception was too weak to make out any modulation. See screenshots below, containing all sufficient data like time, frequency, resolution etc. Reception has been done in Northern Germany with FDM-S2 by ELAD at a quadloop antenna of 20 m circumference.

« Older Entries