Tag Archives: SDR

Looking at Things: Elad FDM-S3 [beta]

The new FDM-S3. Made in Italy, by ELAD.
19.7 MHz alias-free for receiving, recording and playing

As seen from now, ELAD’s FDM-S3 is still to come. It features a 16 bit SDR with up to 24 MHz bandwidth (19.7 MHz alias-free) for receiving, recording and playback. It will become the great brother of the renowned FDM-S2 of also 16 bit, but with just 5 MHz alias-free bandwidth which was State-of-the-Art when this radio hit the market. Still, this remarkable FDM-S2 sets the standard in its price class.

The file format of the S3 is the same as with the S2, so Simon Brown’s software SDRC V3 works on S3 files also (see screenshot at the bottom). This opens V3’s File Analyzer plus up to 24 demodulators when playbacking files. SDRC V3 will support also live reception when the radio will be more widely available.

Simon Brown’s software SDRC V3 is reading FDM-S3’s files also.
The FDM-S3 cover the whole FM band. Here shown with receiving six stations in parallel, including demodulation and RDS deocding. The lower half of the the spectrogram shows the performance without pre-amplifier, the upper part with pre-amplifier switched in.

Winradio’s SIGMA: “… the Killer speaking!”

Winradio’s Sigma is here covering the whole HF range from 0 to 32 MHz (top left, spectrogram), with brodcaster CRI on 15’410 kHz demodulated (top right, spectrum) and the complete range of 0 to 88 MHz (bottom, spectrum).

When I saw the late Chuck Berry in concert with Jerry Lee Lewis, the latter was announced as: “… the killer speaking!” Having switched on Winradio’s WR-G65DDCe, or ‘Excalibur Sigma’, the also breathtaking show of this receiver reminds me to that concert: The Sigma is also kind of a killer to all other software-defined radio (SDRs) for which it now defines the benchmark in nearly all aspects.

It comes as the top model of a highly respected line of SDRs from Winradio in Australia, which pioneered the market of high performance receivers defining the state of the art. For hobbyists, the Winradios often define the utmost price tag they want to pay. Whereas professionals, in opposite, are happy to get an excellent peformance at modest costs. Yes, buying the Sigma will set you back nearly 7’000 Euros, but: “Madame, there is no second.”

What makes the Sigma unique? First, it is its covering up to 64 MHz with 16 bit resolution flawlessly over an USB3.0 connection, resulting in a spurious-free dynamic range of 111 dB (2 dB lighter with pre-amplifier). You may record this full range even onto external hard disk without loosing a bit. Then you may play back and tune it as live from the hard disk, offline and flawlessly. The whole HF range from 0 to 32 MHz needs about 155 MB/s with even some headroom when doubling the range to even 64 MHz. Winradio says, the Sigma will run from a quad core, and they are right: I have it running from a laptop Dell Inspiro 5770 with i7 8550U @1.8 GH, 4 cores, 16 GB RAM, 2TB hard disk. CPU usage during recording a 32 MHz wide range was never over around 12%.

From start, Winradio has built up a solid reputation to combine professional hardware delivering top performance with intuitive software, resulting in a nearly unsurpassed user experience. As you can rely on the published data, I want to concentrate on Sigma’s practice. This will be a work in progress as it should include some time-consuming recordings and comparisons.

P.S. UK’s „Radiouser“ and Germany‘s „Funkamateur“ will publish an in-depth article on the Sigma in their September issues. Stay tuned.

GMDSS & Display Launcher: Monitoring seven Channels in parallel

DiplayLauncher_4

GMDSS-Display reading decoded data streams from seven MultiPSK’s instances in parallel, presenting all information neatly in one database.

GMDSS is a system of ship-coast and coast-ship digital communications on six main HF channels. At an average location in Germany, you will receive about 5000 messages altogether during 24 hours.

In the past, I mostly used the excellent and free YaDD software to decode all channels in parallel (yes, YaDD can be opened in multi instances, each one in a separate folder).

During HFDL monitoring, I came across Mike Simpson’s free software Display Launcher which neatly collects now up to 24 different data streams, coming from up to 24 HFDL channels in a clear database format.
Mike’s software also contains a module called “GMDSS-Display” which now works similar in collecting datastream from up to seven GMDSS data streams, decoded by MultiPSK software.

Yes, also MultiPSK can be opened in many instances, each one in a sperate folder. By this way, it accepts e.g. the audio input of seven different GMDSS channels from an SDR via each different VACs, and decodes each of them.
To do so, the decoded data of each MultiSPK instance has to be backed up regularly:
Configuration -> Regular back-up -> 20 sec
Then, decoded data is automatically written into the appropriate QSO.txt file. This, in turn, is read by GMDSS-Display. Of course you first have to set the paths to guide the software to the appropriate sources.

It takes a bit time of setting it all up, but then you may run this combination until a Windows’ update forces the PC to re-boot 😉

With Mike’s development, you have a unique and mighty tool at hand for a 360° view now also in the field of GMDSS – thank you very much!

Please find below the results of a 24 hours’ session on all seven GMDSS HF channels – coast stations only, automatically drawn onto DX Atlas. All stations received in Germany with SDR FDM-S2 and MD300DX, an active vertical Megadipole of just 2 x 2.5 m of stunning performance.

DXAtlas_5

Received coastal stations on all GMDSS channel/HF during 24 hours in Germany world-wide and …

DXAtlas_6

… those with a focus onto Europe.

TDoA Direction Finding: First Experiences on the KiwiSDR Net

6465_5

With some iteration, as described in the PDF, the former unknown site of a CIS-12 transmission on 6.465 kHz has been disclosed as the Russian Navy from Baltysk, Kaliningrad.

The stunning direction finding tool on the KiwiSDR net has hit the community. Most people are enthusiastic about the new horizons, some some smart people had opened for free.

A few people, however, reported some disappointment as they couldn’t pinpoint each and every transmitter with expected high precision.

To avoid this disappointment, you have to know what you are doing. The TDoA tool for direction finding indeed delivers automatically stunning results. But you have to think a bit about the setup, and also do some iteration.

I wrapped up my first experiences with TDoA in this PDF. You may simply download it by double-clicking the link, and open it in a PDF reader. It consists of 22 pages and 37 instructive figures. I greatly stressed the practical part of direction finding with this tool – with 13 explicit case studies from 2,6 MHz to 15,6 MHz.

The idea is to have more fun by getting the most reliable results.

SDR Console V3: New and indispensable Software

V3_Dimtsi

“Living Sonagram”: On the right window, you see a part of a 24 h recording at 6,1 MHz bandwidth (ca. 2 TB) with 1 line/second. Tagged is the sign on of Dimtsi Hafash which is received by the undocked “Receive” panel of V3’s GUI. At the bottom: signal strength on 7180 kHz over 24 hours reveals e.g. s/on, s/off and fade in.

Just a small note on a real real big event: Simon Brown, G4ELI, has published V3 of his indispensable SDR Console software on June 18th, 2018 – after three and a half years of heavy coding. Download it here and donate. Or vice versa.

V3 is a quite universal software for most SDRs on the market. For all, it provides the same graphical user interface (GUI) and the same functions (plus those specific to some devices).

All

DXer’s delight: On top the sonagram to visually catch signals (here: JDG from Diego Garcia; tagged). Bottom, from left to right: receive GUI for fine tuning, decoder W-Code showing “JDG”, below this “Playback” panel for controlling the recording (back/forward, e.g.), and on the right a database.

There are many unique functions and modules which will take DXing with SDRs to the next step. For now, let me mention just two of them:

  • 24 parallel demodulators within the SDR’s bandwidth – fully independent in e.g. mode, bandwidth and AGC to receive, record and decode 24 signals/channels in parallel.
  • a sophisticated File Analyser  which presents a recorded band as “living sonagram” – whre you see and click to a signal which then is played via the basic GUI

6pane

Up to six parallel demodulators can be seen on the main screen (from up to 24 possible).

 

1520

1520 kHz from 18:00 to 05:00 UTC (local SR/SS: 19:43/02:58 UTC) with 100 Hz bandwidth and 0,0031 Hz resolution (= +65 dB over 10 kHz!) reveals at least 27 stations and their offsets.

Each of these just two features mentioned will open new worlds for DXing and even serious professional monitoring. I will be happy to come back to some applications of V3 in more detail.

Thank you very much, Simon, for providing this excellent tool for free!

4800

4’800 kHz: First CNR1 with sign on at 20:15 UTC and fade out, then AIR Hyderabad with the same, but s/on around 00:06 UTC.

 

7435kHz

You may export levels over time on one frequency or level over frequencies at a given time. This graph visualizes the activity on 7435 kHz with 86’400 levels (on per second over 24 h). The data had been exported to QtiPlot for further investigation.

Einführung SDR: Kompakt, praxisnah, verständlich

Wer eine konzentrierte, praxisnahe und verständliche Einführung in die Technik Software-definierter Empfänger (SDR) sucht, der findet alles dazu in einem 28-seitigen und deutschsprachigen PDF von Hayati Ayguen.

Nach der spannenden Lektüre kennt man die Chancen ebenso wie die Grenzen von SDRs, kann die Prospektdaten und vollmundigen Werbeversprechen vor allem der großen Hersteller von Amateurfunkgeräten besser einordnen und lernt somit auch die Leistung sowie den Funktionsumfang der Produkte kleinerer Hersteller noch stärker schätzen.

Einen ersten Überblick bietet Hayati auch auf Folien.

SDR-Netz des DARC e.V.: Rauschende Ergebnisse

R2T2_Braunschweig_ANT1

Einfach vergleichen: Oben CHU 14.670 kHz an einem Remote-Standort des DARC e.V., unten zur selben Zeit an einem durchschnittlichen Standort.

Aus den Mitteln seiner “Mitgliedschaft Pro” bestellte der DARC e.V. im Jahre 2014 sein Web-SDR-Transceivernetz. Es soll seinen Mitgliedern “weltweiten Funkbetrieb aus dem heimischen Shack ermöglichen”. Jeder der über 1.000 DARC-Ortsvereine war aufgerufen, sich als einer der zwölf Standorte zu bewerben. Gesucht waren solche Locations, die vor allem einen störungsarmen Empfang und gute Antennenmöglichkeiten bieten – was der Funkamateur in der Stadt eben nicht hat.

Obwohl die R2T2 genannten Geräte für über 25.000 Euro längst ausgeliefert wurden, ist es bedauerlicherweise merkwürdig still um dieses schöne Projekt geworden; auch die zugehörige Yahoo-Newsgroup scheint nicht mehr ansprechbar zu sein.

Wie also ist der von außen (ich bin kein Mitglied des DARC e.V., begrüße aber dieses Vorhaben uneingeschränkt!) sichtbare Stand des Projektes?

Um das zu erkunden, habe ich am 20.12.2017 alle verfügbaren Remote-Standorte (sechs, und die auch lediglich empfangsseitg ansprechbar) mit dem Empfang “im heimischen Shack” – leider einer ziemlich durchschnittlichen Location – verglichen.

Die ersten Ergebnisse habe ich in einem PDF zusammengefasst, das ihr hier unter R2T2 herunterladen könnt.

Diese Versuche wurden zur Vervollständigung des Bildes fortgesetzt – siehe unten. So nahm ich am  21.12. um 07:45 UTC einen Vergleich auf 17.950 kHz vor, wo bei mir der Rundfunksender China Radio International/Kashgar mit einem SNR von gut 31 dB einfiel: bis auf ein sehr schwaches und praktisch unverständliches Signal vom Remote-Standort Wiblishauserhof war auf den anderen Remote-SDRs des DARC so gut wie nichts zu hören, zum Teil wegen (lokaler?) Störungen. Unten der Vergleich meiner Station (unten)  mit dem bayerischen Remote-SDR (oben).

r2t2_Bayern_17950

Vergleich China Radio International, 17.950 kHz: oben der bayerische SDR des DARC-Remote-Netzes, unten dieselbe Station zur selben Zeit am Standort DK8OK.

Einen weiteren Test unternahm ich am 26.12.2017 gegen 12:30 UTC auf 1.521 kHz (CRI/Kashgar, Nähe zum 160-m-Band) und auf 4.800 kHz (China National Radio 1/Golmud). Diesmal erfolgte der Vergleich an einer Aktivantenne (statt der Quadloop)  meinerseits, die bei beiden Stationen eine Empfangsqualität von SIO 253 bot.
In beiden Fällen war das Ergebnis ähnlich: von den sechs verfügbaren Remote-SDRs konnte drei die Stationen überhaupt nicht empfangen. Eine weitere lag knapp über der Hörschwelle, Schöppingen zog fast gleichauf, während Wiblishauserhof in etwa Gleichstand mit meiner Anlage bot – als einzige Station von zwölf bezahlten/geplanten. Für gut drei Jahre Bauzeit und über 25.000 Euro Investment ein Befund mit durchaus Luft nach oben.

Eine Fortsetzung derartiger Vergleiche scheint daher solange sinnlos, wie das DARC-Netz nicht erweitert bzw. Standort/Antennen/SDRs entscheidend geändert werden.

Was hingegen engagierte Hobbyhörer ehrenamtlich und mit allein privatem Geld im Gegensatz zum “Bundesverband für den Amateurfunkdienst” der staatlich geprüften Hobbyfunker zustande bringen, zeigt – ebenfalls mit 14-Bit-SDRs – das leistungsstarke Kiwi-Netz.

« Older Entries