Doppler: Following Airplanes’ tracks

Carrier and Doppler trace (left), locations of transmitter, receiver and track of flight NH8406 – March 27, 2021, around 16:45 UTC [click onto the screenshot for richer detail]

Working on a project which will focus on Doppler spread of HF channels (see at the bottom) and other impairements, I also bumped into some more prominent Doppler catches, namely on the VHF aero band. I took the AM carrier of nearby Hannover VOLMET on 127.4 MHz and observed doppler traces about plus/minus 200Hz the carrier frequency. Following the acitvity in the airspace via Flightradar24 in parallel, it is easy to match traces and aircrafts. In this case, I nailed cargo flight NH8406 from Frankfurt to Narita/Tokyo. It is important to remember what is shown in left part of the screenshot: it is the signal of Hannover VOLMET, reflected by this moving Boeing 777-F. Thus, the reflected frequency shows a Doppler frequency shift – depending on the relative speed in respect to transmitter and receiver. A positive Doppler frequency signals that the aircraft is approaching my location. When it turns to the lower frequencies, I see the aircraft passing.

Things get more complex wen it comes to the Doppler shift at HF propagation. You will also see planes, but effects from high winds in the upper atmosphere, coming and fading of ionospheric layers and the influences of the geomagnetic field are prevailing. Due to the much lower frequencies, the effects are just about a tenth compared to thie above example on VHF.

See below a result from my observations on HF as a preview.

Carrier of TRT Emirler, Turkey, in the 19 meter band. Just after sunrise, the carrier splits into two, and you also see double lines due to magnetoionic effects. The window shos about 3Hz in the vertical, and about 40 minutes in the horizontal scale.

Propagation and MUF: Some notes

Solar Cycle #24: The Maximum usable frequency (MUF) largely follows the solar cycle. But even during not so active periods, it mostly reaches at least 20MHz. Data from Ionosonde Juliusruh of Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock.

We all know that propagation largely follows solar activity – on a diurnal scale, as well as along the seasons and, above all, the solar cycle – see diagram at the top of the page. We just had entered solar cylce #25, and again some unchartered waters, filled with high hopes as well as some shallows. This is a good opportunity to have a look into the rear view mirror, as in general terms we can see part of the future in the past.

To do so, I did some explorative data analysis, available for free from the following sources:

The following diagram shows the correlation of the daily sunspot number with the maximum, the mean, and the minimum MUF as measured that specific day. Therefrom, you see a decent correlation between solar activity and the MUFmean, whereas the impact of solar activity onto the MUFmax splits up at sunspot numbers above ca. 125. Values above in some cases do enhance the MUFmax, and in some cases just to the opposite. The good news, however, is that even at low solar activity, there may be experienced a MUFmax well above 30MHz, the threshold from HF to VHF.

Daily sunspsots vs. daily MUFmax (red), MUFmean (blue) and MUFmin (grey) at Juliusruh.

One of the reasons that “more isn’t more in each case” lays geomagnetic activity, also triggered by the sun. From the data trove, I took seven days of November 2012: A stream of days with good propagation is interrupted by one day where the MUFmax in knocked down from more than 30MHz to just under 15MHz. The reason is a coronal mass ejection (CME), resulting in a magnetic storm, disturbing the earth’s magnetic field and, hence, ionospheric propagation. Already on the next day, propagation is recovering. Please have also a look at the “silence before the storm”, namely November 13, 2012. There you see a slight enhancement of the MUFmax of about ten percent. The geomagnetic storm is lagging behind one to three days the solar activity, as calculated from the sunspots. So, you should use this information surfin’ HF just after a massive enhancement of solar activity – before propagation recedes for a day or so. By the way, a geomagnetic storm doesn’t hit the earth in each case. This has to to with the distorted magnetic field which is no plane but resembling the tutu of a ballerina (not my association …).

Suddenly, a beautiful MUFmax (red line) of greater than 30MHz is more than halved on November 14, 2012, for example. This correlates with geomagnetic activity (grey steps).

Tacitely, I had used the term “MUF” in the sense what is exactly dubbed “MUF(3000)F2”, or: “MUF of the F2 layer when communicating between two stations at a distance of 3000 kilometers”. Ionosondes mostly measure the vertical MUF with transmitter and receiver at the same location, which has to be multiplied by a specifc factor. This factor of about 1,5 to 4 largely depends on the distance of the two stations, and the height of the layer. The following illustration shows propagation between my location and Funchal/Madeira, just 3000 kilometers away in the Atlantic Ocean. At a given height of the refracting layer, one hop gets longer with lowering the elevation of the antenna beam. The lower this angle, the larger the hop. It is a difficult and often expensive task to get this angle under 10° or so, especially at lower bands.

DK8OK -> Funchal, distance 3000km. One-hop propagation is only possible at small antenna beam elevations. Visualization with PropLab 3.1

The illustration below shows the MUFs of ten consecutive days for bridging different distances from 0 (critical frequency, measured directly at the ionosonde) to 4000km. The last distance reckons with a layer height of 330km, being quite optimistic in the years of low solar activity but will be reached easily in other times. Nowadays, the standard is to use MUF(3000), wheras you often find MUF(4000) in legacy literature.

At a given vertical MUF, the oblique MUF is the highe, the greater the distance is – up to a specific limit.

In the last paragraph, I mentioned the height of the refracting layer, and this changes also with solar activity. How, is illustrated by the figure below. There you can see the heights of the four ionospheric layers F2 (highest), F1, E and Es, or Sporadic-E. At the bottom, you find the smoothed sunspot number. You can see that this mostly influences the F2 layer – raising it at high solar activity, and, hence, allowing for larger 1-hop-distances. The height of all other layers follow a much more regular yearly pattern, and are not that much dependant on solar activity.

The height of both F layers, namely F2 and F, is largely dependant on solar acitivity.

This, in turn, leads to the fact that the critical MUFs of each layer, by and large, is matching solar activity. F2 and F layer are mostly influenced by solar activity, as all layers are by the season. See illustration below.

The height of ionospheric layers F2, F1, E and Es, plus smoothed sunspot number – top to bottom.

Just a look on how the MUF changes from day to day under more or less stable solar conditions. With the overall pattern remaining nearly the same, the MUFmax may change considerably, ranging from 20 MHz to well above 30MHz. Nevertheless, at each day you will see a sharp rise before local sunrise (fast iononization) and a flat slope (slower re-combination) directly from around sunset.

How the MUF changed, day by day, over 24 hours on ten consecutive days around the autumn’s equinox – with sunrise and sunset marked.

The following figure shows that there is a high probability to expect today’s propagation also tomorrow – to about 75 percent. There, I used each day of the full twelve years’ period to cover the whole solar cycle.

ow do propagation changes from one day to the next? There is a probability of more than 75 percent that it will be just the same.

Did you ever asked yourself, why important contests and DXpeditions are taking place in spring and autumn, preferably in years of high solar activity? The two following figures will give an answer: the MUF peaks just in these seasons. The peaks are prominent in a year of high solar activity, and not that pronounced in a year of less solar activity.

Yearly MUF changes during high solar activity (2014) …
… and during low solar activity, 2011.

Last, but not least, we now will leave the MUF, heading for power, or, in this case, field strength. The figure below shows hourly measured fieldstrengths on six HF channels from 22.5MHz (top) to 4.3MHz (bottom), normalized to 1kW EIRP from June 1, 1980 to December, 1993, after Deutsche Bundespost had cancelled this project. I added daily smoothed sunspot numbers to the top and the bottom figure. 22.5 MHz has even not been used at all during a time of low solar activity, whereas they stopped using 4.3 MHz from the beginning of a new solar cycle. You can easily spot that some solar activitiy greatly enhances propagation on the channels up from 6.4MHz. In this case, the daily time where you can use the higher channels up from 13.0MHz , also increases. In years of lower solar activity, the time of propagation on the lower channels, down from 8.6MHz, is increased. But this effect is by far not outweighed by the effect on higher frequencies. For these data, we are indebted mainly to Dr. Thomas Damboldt, DJ5DT (1941-2015).

14 and a half years: hourly measured field strengths on six HF channels from 22.5 MHz (top) to 4.3 MHz (bottom) for the path New York -> Norddeich, Northern Germany. Smoothed daily sunspot numbers had been added to both, top and bottom diagram.

To make use of the future you have to know the past. This is easy with cyclic, physical processes. So this look into history is also a look forward into same aspects of solar cycle #25. It will bring better propagation on higher bands, where we may use smaller antennas, face less atmospheric noise and have larger frequency allocations. I am sure that F2 propagation will even take miniscule signals (QRPP) around the world, allowing for daily contacts from Europe to Australia even on 6m – as I had experienced at the peak of cylce #23. Be prepared!

Really 30 years ago? Remembering it like yesterday – daily contacts from Germany with VK6 on 6m over F2 at a daily sunspot number on this October 15, 1991 of 198.

P.S. All calculations/diagrams had been made with Matlab. You may also try it with free Python, matplotbib and Seaborn or other software, you have at hand. With millions of data fields needed, spreadsheet software must be avoided.

HF Propagation: Professional, free, and Real-time

IRTAM shows the actual state of the ionosphere – see text.

Without proper propagation, world-wide HF communications simply doesn’t exist. We, hams and SWLs, depend on the supporting power of the ionosphere and sometimes struggling with its capricious behavior. Many forecast models had been developed, VOACAP the most prominent among them. Like some far-looking weather models, they deliver broad probabilities – more the climate of the quarter than the weather in the afternoon. Even smart and processor-hungry 3D-raytracing software, taking into account more factors than just the average sunspot number of the month, do face challenges.

Here, IRTAM comes into play. The acronym means “IRI Real-Time Assimilative Mapping”, where IRI stands for the International Reference Ionosphere. This model is the base which is updated by the data of many of so-called digisondes. They are regularily probing the ionosphere at many locations of the world in time increments up to as short as five minutes.

The processed data reveal the actual space weather at this location. Experience, models and clever algorithms are used to spread (assimilate) these results over a world map, and, even more, to produce an animation of the last 24 hours – see the screenshop on the top. Click here to see the last 24 hours.

They show the frequencies, just reflected by the F2 layer under an angle of 90° (vertical sounding). You have to multiply these frequencies with a factor of about 3 to get the highest frequency, being reflected (indeed: refracted) for usual HF communications, or oblique sounding.

Additionally to this, the map will also show e.g. “deviation from climate”. By this map you can compare your VOACAP results (“climate”) to get an impression of the deviations – plus or minus, location, time.

It is a free service of a team around Prof. Bodo Reinisch, supported by world-wide data of their Lowell Digital Ionosondes, the gold standard in this field.

Medium Wave: Signals May tell sunris/Sunset at their transmitter’s site

The two stronger carriers (Romania left, Algeria right) exhibit Doppler-shifted scatter; see text for a more detailed explanation.

During my expeditions into the thicket of mediumwave offsets, I bumped into pictures like that at the top. In the lower part of the screenshot, you see two carriers mit seahorse-like structures looking to the right. In the evening, they look towards the West.

This is one of the several effects which can be seen at local sunrise/sunset. Here, the carrier gets “clouded” and show frequency changes. These effects are associated with Doppler shift (moving of ionospheric patches/layers) as well as scattering caused by irregularities of the ionosphere, most notably Travelling Ionospheric Disturbances, or TID. Whereas the Doppler shift, by vertical moving of reflecting layers like combining of F1- and F2-layer to one and lower F-layer when approaching darkness, is comparatively small, high wind speeds in these regions can cause a much faster horizontal movement of such regions. This, in turn, may cause a Doppler shift of about 1Hz or even higher in the medium wave range.

The Figure at the top demonstrates this effect at two transmitters on 1422kHz, namely SRR Radio România Actualități from Râmnicu Vâlcea/Olănești (sunrise 05:55 UTC/sunset 15:12 UTC; distance 1433km) and Radio Coran/Radio UFC/Radio Culture/Chaîne 3 from Ouled Fayet/Algeria (sunrise 06:58 UTC/sunset 17:00 UTC; distance 1840 km). Seen from midnight, sunrise first occurs at the Romanian transmitter, followed by the Algerian one with the seahorse-like pattern of the scatter towards the higher frequencies. Around each local sunset, first Romania sees darkness, followed by Algeria. Here, the scatter pattern turns towards the lower frequencies. In the insert at the right, contrast has been sharpened to additionally reveal a split-up of these carriers due to propagation into two paths.

This effect often helps to determine the local sunrise/sunset of a carrier. I marked what presumably is the carrier of MBC Radio 1 from Matiya/Malawi, sunrise 03:22 UTC; listed 02:00 to 22:00 UTC, but obviously on a 24 hours’ service this Tuesday.

Both Figures at the bottom try for some detective work without knowing specific offsets (because not available) but relying only on schedule and the above mentioned propagational effect. Crime scene takes place on 1233kHz, where we want to scrutinize two channels, one on 1232,9937 kHz, the other on 1232,9951kHz.

Distinctive scatter, associated with local sunrise at the transmitter, provides a strong hint towards the location.

The s/off- and the s/on pattern match that of Chinese National Radio #17’s Kazakh service. Incidentally, sunrise takes place in Qinghe at 01:42 UTC, and in Boertala at 02:04UTC – next Figure. Boertala is listed with 10kW (stronger signal), Qinghe with 1kW. Unfortunately, the f/out time of other CNR17 transmitters on this channel is mostly covered by phase noise from Rádio Dechovka in the Czech Republic and Absolute Radio in the United Kingdom.

Some CNR17 locations and the terminator during sunrise in Boertala, see text. Visualized with free Simon’s World Map.

Here I am indebted to Jens Mielich, Head of the ionosonde at Juliusruh/Germany, who was so kind to comment on this observation. According to him, the observed Doppler shift of 1Hz on 1422kHz should have been caused by a refracting medium, moving at an (angular) speed of roughly 105m/s. At Juliusruh, he observed e.g., an ionospheric drift of 311m/s±93m/s from East towards West on January 19, 2021 at 04:19 UTC: “You will get a positive Doppler shift during a West/North drift, and a negative one at East/South drift.” He adds that further investigations on a more longer time series are needed.

PSKOVNDB: An exciting new software for Mediumwave DXers

See the bunch of carriers on 590kHz at the left. PskovNDB shows at the right a diagram of noise, the combined signal strength of the 200Hz window and the signal strength of the carrier just picked.
Here the very carrier of VOCM/St. John’s had been clicked instead. You easily see that this signal is dominating the channel – only one of the many exciting features of free PskovNDB software!

Recently, I came across an upgraded version of Ivan Monogarov’s PskovNDB software, already having collected all laurels available as being the Gold Standard for chasing non-directional beacon, or NDBs. Recently, Ivan had expanded his tool with some as unique as exciting features for the avid medium wave DXer.

At a first view, it converts recorded WAV files (also: RF64 format, done with SDRC V3 software) into spectrograms of high resolution in which you can easily see the number of stations, measure their precise offset and see their signal strength.

A second view reveals the smart feature of producing diagrams of each signal – plus noise level and the combined power of the whole window. You can see both in the screenshots on top of this page.

A third view almost exactly helps to distinguish between signals where you can here music, listen at least to some words or phrases, or which do provide full audio.

Nothing more? Yes. Under the hood, there is much more. So, you can do automatically recordings each day and also automatically send them to PskovNDB software for showing the spectrograms, one after the other, like on a film roll. This enables you to pick the recording of the most promising day(s) for further inspection.

I wrote a short introduction to the beta version of this free software, and Ivan was so kind to add some most helping notes to this. You can download it here. It contains also some additional information, i.e. a link for downloading the software.

Spassiba, Ivan, for another software breakthrough!

Medium Wave: Offset Atlas – all 9 kHz channels Plus VLF & Longwave, 24 hours

The “Atlas” shows screenshots of all 9kHz channels on Medium Wave within a 50Hz window, sometimes better. It also shows some odd channels plus Time Signal Stations on VLF and all Broadcasting Longwave Channels. You can download it for free to determine accurate and stable offset readings over 24 hours (zoom in by e.g. 400%)

With the new Elad FDM-S3 and its OCXO/GNSS-stabilized clock, I did a 24h recording of the whole medium wave band on January 19, 2021 in Northern Germany; plus longwave on Januar 21, 2021. Free software SDRC V3 enabled me to make up a spectrogram of each channel within a window of 50Hz width, and at a frequency raster of 9kHz on medium wave. You can easily see:

  • sign-on/sign-off
  • fade-in/fade-out
  • accurate and stable frequency offset over full 24h down to a millihertz
  • frequency control of the transmitter’s oscillator (stable, drift, sinus, sawtooth …)
  • propagational effects (doppler, scatter …)

The format is PDF, DIN-A4, landscape, resolution 300dpi – see screenshot at the bottom. This allows you to zoom to a factor of about 400% to search for details and better read out of the time/frequency scale. It weighs 865MB. You can download it here, and open it with your PDF reader (you can also point your mouse cursor onto the link, click right mouse key, and choose “Save under …”). Leafing from one page to another gives an interesting overview.

A similar Atlas showing a raster of 10kHz is also available for free – just scroll to the previous post of this blog. It is also planned to publish a general article about the background, about what to do with such a tool, and how to do this by yourself.

I am sure that it will open some new horizons on Medium Wave DXing, including accurate offsets over up to 24h.

Medium Wave: Offset Atlas – all 10 kHz channels, 24 hours

The “Atlas” shows screenshots of all 10kHz channels on Medium Wave within a 50Hz window, sometimes better. You can download it for free to determine accurate and stable offset readings over 24 hours (zoom in by e.g. 400%)

With the new Elad FDM-S3 and its OCXO/GNSS-stabilized clock, I did a 24h recording of the whole medium wave band on January 19, 2021 in Northern Germany. Free software SDRC V3 enabled me to make up a spectrogram of each channel within a window of 50Hz width, and at a frequency raster of 10kHz. You can easily see:

  • sign-on/sign-off
  • fade-in/fade-out
  • accurate and stable frequency offset over full 24h down to a millihertz
  • frequency control of the transmitter’s oscillator (stable, drift, sinus, sawtooth …)
  • propagational effects (doppler, scatter …)

The format is PDF, DIN-A4, landscape, resolution 300dpi – see screenshot at the bottom. This allows you to zoom to a factor of about 400% to search for details and better read out of the time/frequency scale. It weighs 559MB. You can download it here, and open it with your PDF reader (you can also point your mouse cursor onto the link, click right mouse key, and choose “Save under …”). Leafing from one page to another gives an interesting overview.

Yes, a similar Atlas showing a raster of 9kHz is under way and will be published also here in due time. It is also planned to publish a general article about the background, about what to do with such a tool, and how to do this by yourself.

I am sure that it will open some new horizons on Medium Wave DXing, including accurate offsets over up to 24h.

Aloha: KUAU from Haiku/Hawaii, received on January 19, 2021 by DK8OK. Proofs are frequency, plus the rather unique fade-in/fade-out in the European afternoon.

Comments and suggestions are appreciated:

Millihertzing with Software “Carrier Sleuth”

24 hours on 590kHz on January 19, 2021 in Northern Germany, reveals a couple of North American signals with VOCM of St. John’s, Newfoundland being the strongest and KQNT Spokane on 590.002kHz/Washington State the most interesting with reception also in the afternoon.

“Millihertzing” seems to become “le must” of this season. The most recent software stems from smart software author Chris Smolinski, W3HFU, who over many years offers inspiring software,this new one dubbed Carrier Sleuth. It mainly analyzes I/Q-WAV files from software-defined radios at high resolution, being a perfect tool for measuring offset frequencies on mediumave. The screenshot at top shows such a spectrogram which covers 20Hz in width and 24h in length on 590kHz.

Why using “Carrier Sleuth”, when haveing SDRC V3 at hand? First, it works together with a multitude of WAV formats from many different SDR software (see Chris’ list, which is still expanding). Secondly, it let you hop from one channel (9kHz or 10kHz) to the next – if a proper part of the spectrum has already been converted from WAV to FFT. It also provides coverting spectrograms to CSV to apply some statistics on each signal. There are many more smart feature, and Chris will even add some exciting more, e.g. processing I/Q files in real time to save a lot of time.

With my bread-and-butter software being SDRC V3, recording in WAV RF64 one-file format (which sometime swells to nearly 10TB), “Carrier Sleuth” can even digest these recordings with a workaround: specify an interesting part of the medium wave, defined by upper and lower channel and time segment, and convert this into simple WAV. This is easily done with SDRC V3’s Data File Editor. It is also the way, Carrier Sleuth produced the screenshot at top of this page.

Chris published this software first on December 10, 2020. He eagerly looks for bug reports, applications and further suggestions form the users. Take a free test drive; registration code 19.99 US-$.

Magnificient FDM-S3: the Millihertz Magnifier

1340kHz, 25Hz window, resolution bandwidth 0.0061Hz: more than 100 U.S. AM stations are discernable by their frequency offset.Antenna: vertical active dipole MD300DX, 2 x 5m. Visualized with SDRC V3 software by Simon Brown, G4ELI.

With Elad’s FDM-S3 SDR now hitting the market, we have a receiver at hand which is supported by an OCXO/ GNSS frequency reference. This combines short-time accuracy with long-time stability and allows for precise frequency measurement in the millihertz range (under 30MHz). Exploiting this feature is as exciting as it is innovative. With this new tool, also a new kind of DXing is evolving. One example is propagation analysis. See below the 24h spectrogram of Radio Gotel from Jabura/Nigeria on its exclusive channel of 917kHz:

Radio Gotel transmits from 04:00 UTC to 23:00 UTC on 917kHz. In this spectrogram you clearly see sign-on, sign-off; fade-out, fade-in, plus some other feature like two short power breaks in the evening as well as some instabilities.

What surprises, is both, the late fade out at around 07:30UTC and the early fade-in as early as 15:20UTC. It is important to note that you here see the carrier with a resolution bandwidth of 0.0009Hz, roughly just one millihertz. The gain, compared to a listening bandwidth of 10 kHz, is a whopping 70dB, allowing extreme DX. Audio starts to emerge only from around 18:00UTC. As DX Atlas shows, the whole path between my location and Radio Gotel is under daylight at the palpable fade-in at around 15:20UTC, see screenshot below.

At the first visible trace of Radio Gotel at DK8OK’s location on 19JAN2021, with the whole path still is in daylight. Illustration with the help of DX Atlas software.

As with all new things: “We’ve only just begun”, Carpenters, 1970. To be continued.

Prösterchen: DARC-Funktionäre lassen ‘s krachen!

Prioritäten setzen: 2019 erhielt das “Referat HF-Technik” des DARC gerade mal drei Prozent jener Summe, mit der sich die DARC-Funktionäre für ihr Essen & Trinken von den Mitgliedern aushalten ließen – wohl bekomm ‘s!

Seit ich als junger Mensch in den Deutschen Amateur Radio-Club e.v. (DARC) eintrat, höre ich dieselbe Melodie: “Der Altersdurchschnitt unseres Vereins ist zu hoch! Wir müssen zudem mehr Technik machen!” Diese Sprüche haben selbst meinen Rausschmiss im Jahre 1992 überlebt – und doch hat sich geradezu dramatisches getan! Nein, nicht in Sachen Senioren-Überhang, auch nicht in Sachen Technik-Präferenz. Sondern im weiteren Niedergang von rund 60.000 Mitgliedern kurz vor meinem Rausschmiss bis Anfang 2021, wo es noch gerade mal 32.808 Mitglieder sind.

1.000 Mitglieder weniger je Jahr

Im Zusammenhang mit meinem Rausschmiss hatte ich die Funktionäre gewarnt, dass wegen dieser ausgepichten Art des Ham Spirit sicherlich ein paar Mitglieder den Verein verlassen würden. “Wie viele, meinst Du denn”, fragte jemand höhnisch zurück. Darauf ich: “So um die 1.000 Leute, etwa!”, und, in sein darob berstendes Lachen hinein: “Nicht insgesamt, sondern Jahr für Jahr 1.000 Leute.” Die Herren Funktionäre lachten Tränen. Nun, nach 27 Jahren, hat der DARC gut 27.000 Mitglieder weniger als zu jenem Zeitpunkt. Wer einen Dreisatz beherrscht, kann sich ausrechnen, dass meine Einschätzung halbwegs realistisch war – und die Funktionäre ihre Hanswurstereien betrieben.

Soweit, so schlecht. Aber feiern, das verstehen die Herren (und wenigen Damen) DARC-Funktionäre vorzüglich: knapp 57.000 Euro gaben sie für Essen & Trinken allein im Jahre 2019 aus: Prösterchen! Und die Jugend? Bei einem Beitrag von 31,20 Euro im selben Jahre für unter 18-Jährige mussten über 1.800 dieser Jugendlichen ihre kompletten DARC-Mitgliedsbeiträge aufwenden, um den Appetit & Durst der Funktionäre angemessen zu stillen.

Referat HF-Technik: drei Prozent der Bewirtungskosten

Aber – Technik genießt doch bei unserem technisch-wissenschaftlichen Hobby den Vorrang vor allem anderen? Follow the money: 1.842,30 Euro erhielt das “Referat HF-Technik” – die Herzkammer des Vereins – für ihre Tätigkeit. Dem Taschengeldempfänger oder dem Kleinrentner mag das angängig dünken. Doch es sind nur drei Prozent der sogenannten “Bewirtungskosten”!

Das aber ist noch lange nicht das Ende der Wohltaten. Denn für genau 10.740,63 Euro machte man “Geschenke”. Vermutlich mehr unter seinesgleichen, als dass man Jugendliche damit beglückte.

Aber die Reiselust, die ist doch bei einem Verein, in dessen Zentrum die technisch-schwere-, wie kostenlose Kommunikation steht, kein Thema, oder? Nicht ganz. Denn wiederum im Jahre 2019 finanzierten die Mitglieder 200.744,18 Euro an Reisekosten für ihre Funktionäre: “Lebe wohl, gute Reise” (Comedian Harmonists, 1934). Bei der Rechnungslegung für 2020 wird man hoffentlich sehen, welcher Anteil davon überflüssig war.

Die Kosten der vielen sind Einnahmen weniger

Doch des einen Kosten, sind des anderen Einnahmen. Seit dem Jahre 1340, als man den schönen Buchungssatz “Soll an Haben”, wohl in Genua, erfand. Nein, hier soll nicht die Rede von den angeblich rund 150.000 Euro sein, die ein Vereinskamerad ohne jede Ausschreibung für die Übersetzung eines Buches erhalten haben soll, das man seitdem vor praktisch aller Welt versteckt und das nach DARC-eigenen Maßstäben mit gerade mal rund 10 Prozent dieser Summe entlohnt worden wäre. (Dieser Fall dürfte im gesamten deutschen Verlagswesen einmalig sein. Jeder Verlagsgeschäftsführer wäre fristlos geflogen, hier aber scheint der damalige 1. DARC-Vorsitzende die Sache abgesegnet zu haben – anders ist es nicht denkbar.)

Aber bleiben wir weiter bei den Einnahmen, die ja die Kosten der Mitglieder sind. Für Rechts- und Beratungskosten kassierten Rechtsanwälte und Berater 85,475,77 Euro im Jahre 2019, wozu sich noch 5.422,99 Euro “Rechtskosten” addierten. Wie man inzwischen weiß, ist dieses Geld auch dafür ausgegeben worden, um unbotmäßige Mitglieder mit kostenträchtigen Schreiben zu zwiebeln. Von rechtlichen Durchbrüchen bei Antennengenehmigungen oder in Sachen EMV hat man hingegen nichts gehört.

Notfunk in Not

Und wie steht es um den Notfunk, der neben Jugendarbeit und Technik als heilige Dreifaltigkeit immer dann ins Schaufenster gestellt wird, wenn man die gesellschaftliche Wichtigkeit des Amateurfunks darstellen will? Macht keine 1,6 Prozent dessen, was der DARC für Rechtshändel & Co. ausgibt.

Dick loben aber wollen wir doch die 27,20 Euro, die der DARC 2019 für das UKW-Funksport-Referat springen ließ (also nicht einmal das Trinkgeld in einem Sterne-Schuppen). Denn Funksport ist ja auch wichtig! Gegenüber den Ausgaben für das, was die Funktionäre “Referat Handicap Hams” nennen, erscheint das absolut top generös – denn der Etat, mit dem der DARC unser Hobby für Menschen mit Beeinträchtigungen fördert, liegt bei exakt 0,00 Euro. “Gemeinnützigkeit” will halt verdient werden.

Nur kein Neid!

Zur Klarstellung: Ich esse, trinke und reise selbst ebenso gerne wie gut. Allerdings, Essen & Trinken, auch in der Drei-Sterne-Gastronomie, als Alleinzahler. Zu Neid besteht bei mir kein Anlass, in das DARC-eigene “Hotel Stadt Baunatal”, allerdings hat mich selbst meine sonst unstillbare Neugier noch nicht geführt. Aufmerksam machen wollte ich hier lediglich auf etwas, was man als Missverhältnis zwischen Reden und Tun auffassen kann, zwischen Dampfplauderei und den harten Fakten einer Bilanz. Damit sich was ändert. Am besten, zum besseren.

Wer die Verantwortung trägt

Die Bilanz, übrigens, sollten die Rechnungsprüfer (Kosten “Rechnungsprüfungsausschuss”: 1.016,62 Euro) nicht nur dahingehend prüfen, ob 1 und 1 richtig zusammengezählt sind, sondern auch, ob das Geld entsprechend des Vereinszwecks ausgegeben wird. Und der lautet beim DARC immer noch nicht: Essen Trinken, Reisen. Nicht zuletzt hat der Amateurrat es in der Hand, dem Finanzgebaren (von dem er allerdings unmittelbar ebenso wie mittelbar profitiert) zuzustimmen oder zu widersprechen. Und? Angenommen bei 67 Ja-Stimmen, keiner Gegenstimme sowie zwei Enthaltungen. Wenn einem so viel Gutes widerfährt, das ist schon einen Asbach Uralt wert, wie es erstmals 1955 hieß – wir sprachen ja über das Thema “Überalterung”. Vielleicht gar einen “Asbach Goethe” – ein Rollgriff ins Spesenkonto würde das lässig hergeben.

« Older Entries Recent Entries »