Category Archives: Software

HF Broadcast still in fine health!

Screenshot of interactive Tableau.Map of HF broadcasters; see text

The news about the death of HF Broadcast are greatly exaggerated. The map on the top presents 574 active stations, scattered all over the world. This interactive map has been made with free Tableau Public software: simply click onto the map, an in another tab of your browser it pops up. Now you can point your mouse to a mark and see some data.

There even is more: as some transmitting sites are used by several broadcasters, this fact is shown by different colors. Your mouse will tell.

The best thing of this map is the fact that it is strictly geo-referenced. If you zoom into a station, you should directly see the transmitting site form above – depending, of course, from the resolution of the underlying OSM satellite map.

After having scrutinzed all sources (HFCC, WRTH …) available, I finally decided for ILGRadio. Only these data are concise, complete and precise – a great achievement of Bernd Friedewald since decades! [To keep things simple, only one transmitter’s power is noted for each site]

This map, together with ILGRadio (see below), works as a promising starting point of future work, e.g. band scans in the light of the 21st century …

Just a very small part of Bernd’s excellent ILGRadio list, opened in DBF Manager software, but matching perfectly to be tracked when tuning your receiver; with a choice of SDR software like SDRC V3 and CSVUB.

Winter and Spring: Comparing Signal Strengths

IRAN INTERNATIONAL’s relay station south of Tashkent/Uzbekistan, received on December 16, 2019 (blue line) and April 2, 2020 (yellow line). Day/night below, top pair for Tashkent, lower pair for DK8OK, on the two dates, respectively.

IRAN INTERNATIONAL is transmitting in Farsi via their relay station just at the outskrits of Uzbekistan’s capital, Toshkent, with 100kW on 6270kHz from 12:00 to 04:00 UTC, directed towards Iran.

I received this station in winter as in spring. In winter (namely 16DEC2019), the whole transmission from sign-on to sign-off can be received, wheras in spring (namely 02DEC2020) a considerable part of the transmission after sign-on has been lost in the noise, plus the time towards sign-off in the morning largely coinciding with fade-out; though still celarly visible.

You see also a clear greyline enhancement at least on the fade-in. Sunrise and sunsetset for both locations can be seen from the bar chart below in the diagram..

Path Tashkent-DK8OK of Apbil2, 2020 at 16:00 UTC, path length 4550km.

The graphs are based on 2 x 86’400 points each, providing a time resolution of one second. To make things more clearly, the bold blue and yellow lines represent a smoothed version (moving average: 601).

This is just one example of how the actual signal strength of a station differs from season to season. With 24 hours’s recordings of the whole HF on both dates, it is easy to compare also other stations and frequency ranges. If I have time, I will add some more examples in the future.

BTW: I passed the big transmission center southwest of Toshkent left-hand, riding M39 on the way to Samarkand; it was not encouraged to take any photos …

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot and DX Atlas

Fade-in: Voice of Broad Masses, Asmara/Eritrea

Figure 1: Signal strength of VoBM on 7140kHz from s/on around 14:06 UTC to s/off around 18:30 UTC.

The evening transmission of the Voice of Broad Masses from Asmara-Selae Daro in Eritrea signs on around 14:06 UTC and signing off around 18:30 UTC. Figure 1 shows the signal levels with a resolution of one second, marked by red points, and the smoothed level, yellow line, with a moving average of 601 points, or 10 ten minutes. Smoothed levels span a range from -106 dBm/Hz to -80 dBm/Hz.

There occur considerable peaks around 14:30 UTC, 16:15 UTC and 17:30 UTC. Raytracing the signal, transmitted by a Quadrant antenna HQ1/.25, will help to reveal some mechanics behind the curve.

Figure 2: At s/on, we have a four-hop propagation via the F1 layer, carrying the main signal.

Figure 2 shows a four-hop propagation via F1 layer at 140-160km with a relative steep elevation of about 22°. The much shorter hops, reflected at the E-layer at a height of about 100km, are of less to no importance. The signal gets through, but very weak. The path itself still is in full sunshine, see Figure 3.

Figure 3: At s/on just after 14:00 UTC, the path between Asmara and DK8OK still is in full daylight.

There is a very short, but distinctive peak at 14:30 UTC. This coincides with a similar short time of three-hop propagation (Figure 4) from a very low azimuth of 3°. Of course, the full path still is in daylight.

Figure 4: Around 14:30 UTC, signal improved a bit as a three-hop propagation (still via F1) comes into play.

Just after 16:30 UTC and near sunset at the transmitter (16:37 UTC), there is reached the bottom of kind of a “Hillary Step” before the last run to the peak. The way to a (quite short) plateau starts around 17:00 UTC. There we have a textbook-like two-hop propagation (Figure 5) with the greyline covering just more than half of the great circle path (Figure 6). There, an elevation of under 5° is needed.

Figure 5: From around 17:00 UTC, a time of good reception starts. Reason is the textbook-like two-hop propagation.
Figure 6: With more than half of the great circle path in darkness, VoBM puts a fine signal into Germany.

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot, PropLab

Propagation Day by Day: CRI Kashi, 15.260 kHz

Signal strengths of CRI/Kashi, day by day, from 08:58 UTC to 09:58 UTC on the nine consecutive days March 15 to March 23, 2020; see text.

Propagation on HF differs from day to day. The nine diagrams at the top show the signal strengths of China Radio International’s Kashi transmitter, 500 kW, beaming to Romania; 08:58 UTC to 09:58 UTC from March 15 to March 23. The basic resolution (black grey points in the background) is 100 milliseconds, whereas the blue line marks the moving average with 601 points. The “moving average” can be best understood as a lowpass filter, revealing possible trends on a coarser scale. In this case, you cannot see such a trend.

If you compare a part of each transmission on a much finer scale, you even see sheer chaos, as the Figure below is showing:

All nine signal levels drawn together into one diagram (top), and a small part of it zoomed (bottom) reveals sheer chaos.

There seems to be no visible correlation on any scale in this case. There are other cases where, however, some correlation can be found – to which I will come back in some future entries.

The last diagram at the bottom of this pages shows a much more forgiving picture of the signal: the average level changes not more than ±4 dB between best and worst days. This so-called box diagram illustrates best the actual receiving quality of the broadcast, demodulated with an synchronous detector to largely avoid severe distortion by selective fading. The difference of deciles 90% and 10% marks the fading range, a key figure in describing the quality of reception – see “Ionospheric Radio” by Kenneth Davies [London, 1990/96, pp. 232].

The box plot shows very similar signal strengths, day by day. You should concentrate on their each center of gravity. You will also see that the distribution of the signals strengths relative to the center is not symmetrically, with a clearly visible advantage to the percentalge below the average strengths. THis will be covered in some future entry.

Analyzing signal strenghts, is an interesting tool to get to know more about propagation. I will continue this topic – stay tuned!

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot

Greyline enhancement

Signal level on 4750 kHz, observed over some hours: After s/off of Bangladesh Betar, People’s Broadcasting Station at Hulun Buir emerged, showing a peak just after their local sunrise

Today’s SDRs plus able software allow for some new insights into propagation. The figure at the top shows but one example: greyline enhancement. It follows the signal levels on 4750 kHz with a resolution of one second. Smoothing this cloud of points, reveals the more general course of signal level. Here we see, after sign off of Bangladesh Betar, the 10 kW transmitter of People’s Broadcasting Station at Hulun Buir coming up. Most interesting is its short-living enhancement just after sunrise at Hailar in China’s Inner Mongolia, squeezed at their borders to Russia and Mongolia.

This greyline enhancement can be observed regularily on frequencies under, say, 10 MHz: at sunrise at the transmitter’s site, first the F2 layer of the ionosphere is building up, being responsible of the signal of, here, about 5 dB. The lower and attenuating D-layer needs a bit more time to build up, leaving a short-living window for an enhanced signal.

This is to encourage also other HF aficionados to to use this technique.

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot and DX Atlas

CIS Time Signals on VLF

Locations, callsigns and starting times of the received VLF time signal stations, 25 kHz

On January 10, 2020, I did a round-up of VLF time stations from the Commonwealth of Independant States (CIS). They are controlled by the Russian Navy and start their main transmission on 25.0kHz. Then they change to a couple of four other VLF channels. See here for some detailed information in Russian. The diagram below shows a panorama of all received station (Khabarovsk in the Far East missing, as they skip transmission on the 10., 20. and 30. each month) on all frequencies versus time and signal level.

Five locations, six transmissions, five frequencies – this diagram puts it all together.

The diagram features a time resolution of 1s and has a resolution bandwidth of about 0.12 Hz. It is part of a 24h session, made with Winradio’s Excalibur Sigma SDR, active dipole MD300DX (2x5m) and Simon Brown’s software SDRC V3. This software delivers also the values for level over time, which were visualized and combined with QtiPlot software.

Only seemingly, Vileyka and Krasnodar are transmitting on two channels at the same time (from 07:06 UTC/11:06 UTC). This is not the case, but their transmitters show a bit wider signal in their first part of the transmission. Thus, the much weaker (ca. -30dB) “signal” at the same time, but 100Hz up, is some kind of sideband, but not the carrier!

You will see some variation of the carrier power, especially following sign on, but also during the transmission. This can bee seen with tenfold time resolution (i.e. 100ms) and magnifying the dB-scale, see diagram at the bottom as just one example. Fading can be largely excluded for several reasons, artificial characteristic of changes and VLF propagation during short periods among them.

Under the microscope: This rise of 1.5dB of the carrier is part of the workflow of switching on/tuning the transmitter. There are many such details, and they may differ from transmitter, location and performance. Such details might be used for “fingerprinting”.

P.S. The map at the top was made with free software Tableau Public. The locations are geo-referenced, and a satellite map as background will you lead directly to the antennas. Please try this here.

FAX from Shanghai: Pacific Pressures

This FAX broadcast was new to me and received on December 16, 2019 at 08:20 UTC on 16557,1 kHz. It was transmitted via Shanghai Coastal Radio, presumably directed into the Pacific, of which it shows the 48h surface pressure.

It was demodulated from a 25 MHz wide HF recording over 24 hours. This recording was made with Winradio’s G65DDCe Sigma SDR, connected to an active vertical MegaDipol MD300DX (2 x 5 m), and decoded with Wavecom’s W-Code. The recording was scheduled with software SDRC V3 by Simon Brown, and directed via USB3.1 to a 20TB hard disk, WD Duo Book. The resulting one file was 8TB, format WAV RF64.

It was also played back from this hard disk, also via USB3.1. Doing so, it is most remarkable that this setup worked smoothly without any glitches which would promptly have been seen at such a time-critical mode like this FAX., 120/576. So, this reception is also a proof that one can work smoothly with such ‘big data’ even on a hard disk – and not only on expensive SSDs. A FAX transmission is that sensitive that you even see a very weak echo (best seen of the big vertical black stripe at the right which echoes from around 115° East). This originates from a mixed short/long path reception. The strong short path’ flight time is 28.7ms, whereas the weak long path needed 104.7ms. As one FAX line covers 500ms, you can easily measure the delay of roughly 80ms, almost exactly matching the difference of long and short path.

The screenshot has been left un-retouched.

Looking at Things: Elad FDM-S3 [beta]

The new FDM-S3. Made in Italy, by ELAD.
19.7 MHz alias-free for receiving, recording and playing

As seen from now, ELAD’s FDM-S3 is still to come. It features a 16 bit SDR with up to 24 MHz bandwidth (19.7 MHz alias-free) for receiving, recording and playback. It will become the great brother of the renowned FDM-S2 of also 16 bit, but with just 5 MHz alias-free bandwidth which was State-of-the-Art when this radio hit the market. Still, this remarkable FDM-S2 sets the standard in its price class.

The file format of the S3 is the same as with the S2, so Simon Brown’s software SDRC V3 works on S3 files also (see screenshot at the bottom). This opens V3’s File Analyzer plus up to 24 demodulators when playbacking files. SDRC V3 will support also live reception when the radio will be more widely available.

Simon Brown’s software SDRC V3 is reading FDM-S3’s files also.
The FDM-S3 cover the whole FM band. Here shown with receiving six stations in parallel, including demodulation and RDS deocding. The lower half of the the spectrogram shows the performance without pre-amplifier, the upper part with pre-amplifier switched in.

Monitoring: Visualizing with free Tableau Public Software

Part of a multi-channel monitoring of the HFGCS net in ALE on July 14, 2019: the vertikal axis shows the channel, the horizontal axis the time of monitoring.

2019 is the year of groundbreaking Software-defined radios, covering the whole HF range of 30 MHz width and recording it for many hours, e.g. from midnight to midnight. In combination with proper software, this allows for a fresh view onto monitoring.

For the screenshot on the top, I had monitored nine HFGCS channels from 3137 kHz to 23327 kHz in parallel (the 18003 kHz didn’t work, sorry) with Winradio’s SIGMA SDR, running with Simon Brown’s free software SDRC V3 and nine instances of MultiPSK decoder.

After automatic monitoring, I harvested all time-stamped logs stripped them from information not needed, and imported them to free Tableau Public software to visualize activity according to station, time and channel. This gives an overview on the monitoring session, propagation, time sequences of hopping from channel to channel etc. – you might zoom into the screenshot for a clearer look.

Thanks to Tableaus also stunning geospatial features, completely other views of the same log are available. The screenshot below shows the number of logs on all channels of a monitoring session of 12 hours.

Geospatial information of the stations, combined with the number of log entries on all channels.

You may zoom into this OSM[ap], and you may also have a zoomed satellite view (or this or that) which directly hits the feeder point of your antenna … if you know the exact location and this is a part of your log entry – see screenshot below.

Zooming the map above onto JDG at satellite view, directly leads you to the location of the station – here Diega Garcia US Military base.

The most versatile Tableau software also allows to relaize many other ideas to visualize monitoring; some of them already above horizon, others still below. To conclude this entry, I did a visualization of all HF stations/channels of AFAD, the Turkish Disaster and Emergency Management Authority, heard by me over the last 18 months. Each (?) of the 81 Turkish provinces maintains an AFAD base, and all (most?) of them are communicating on HF. As Tableau has many detailed geographical already aboard, a visualization of channels/province being heard is easy.

Analyzing part of a logbook: All Turkish provinces heard with ALE signals of AFAD are colored – the deeper the color, the more channels were received in the last 18 months.

Dream Team: Winradio’s SIGMA and Simon’s Software (1)

All main six GMDSS channels on HF at once: Winradio’s SIGMA with Simon Brown’s software SDRC V3

Some days ago, I wrote about my very first experiences with Winradio’s groundbreaking SIGMA SDR receiver, covering e.g. the whole HF band with 32 MHz width and 16 bit resolution – plus much, much more. SIGMA comes with a fine software, and provides an API.dll for connection to 3rd-party software. Thankfully, Simon Brown, G4ELI, adapted his unique SDRC V3 software to this (and other) Winradio in nearly no time.

This combination has become a real dream team: the best hardware and the best software avalaible. The screenshot at the top shows just one example of others which will follow: I made a 24 hour recording of 0 to 25 MHz (7.85TB) and placed six demodulators on the main GMDSS channels on HF between 2 and 16 MHz. You see each channel in a separate window at the top of the screenshot, showing spectrum and spectrogram with time stamps of the recording. Below those six channels you see spectrum and spectrogram of the whole recorded bandwidth, namely 25 MHz. Eventually, below this spectrogram you see 60 x 24 boxes, one for every minute of the 24 hours recording. Just click into the time you want, and the recording instantaneoulsy to it.

Demodulated audio is guided via VAC1 … VAC6 to six different instances of the free YAND GMDSS decoder – see screenshot at the bottom.

There are great many other applications of this revolutionary combination to which I will come back later.

Parallel reception & decoding of six GMDSS channels at once.
« Older Entries Recent Entries »