Category Archives: Broadcast

Propagation Day by Day: CRI Kashi, 15.260 kHz

Signal strengths of CRI/Kashi, day by day, from 08:58 UTC to 09:58 UTC on the nine consecutive days March 15 to March 23, 2020; see text.

Propagation on HF differs from day to day. The nine diagrams at the top show the signal strengths of China Radio International’s Kashi transmitter, 500 kW, beaming to Romania; 08:58 UTC to 09:58 UTC from March 15 to March 23. The basic resolution (black grey points in the background) is 100 milliseconds, whereas the blue line marks the moving average with 601 points. The “moving average” can be best understood as a lowpass filter, revealing possible trends on a coarser scale. In this case, you cannot see such a trend.

If you compare a part of each transmission on a much finer scale, you even see sheer chaos, as the Figure below is showing:

All nine signal levels drawn together into one diagram (top), and a small part of it zoomed (bottom) reveals sheer chaos.

There seems to be no visible correlation on any scale in this case. There are other cases where, however, some correlation can be found – to which I will come back in some future entries.

The last diagram at the bottom of this pages shows a much more forgiving picture of the signal: the average level changes not more than ±4 dB between best and worst days. This so-called box diagram illustrates best the actual receiving quality of the broadcast, demodulated with an synchronous detector to largely avoid severe distortion by selective fading. The difference of deciles 90% and 10% marks the fading range, a key figure in describing the quality of reception – see “Ionospheric Radio” by Kenneth Davies [London, 1990/96, pp. 232].

The box plot shows very similar signal strengths, day by day. You should concentrate on their each center of gravity. You will also see that the distribution of the signals strengths relative to the center is not symmetrically, with a clearly visible advantage to the percentalge below the average strengths. THis will be covered in some future entry.

Analyzing signal strenghts, is an interesting tool to get to know more about propagation. I will continue this topic – stay tuned!

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot

Greyline enhancement

Signal level on 4750 kHz, observed over some hours: After s/off of Bangladesh Betar, People’s Broadcasting Station at Hulun Buir emerged, showing a peak just after their local sunrise

Today’s SDRs plus able software allow for some new insights into propagation. The figure at the top shows but one example: greyline enhancement. It follows the signal levels on 4750 kHz with a resolution of one second. Smoothing this cloud of points, reveals the more general course of signal level. Here we see, after sign off of Bangladesh Betar, the 10 kW transmitter of People’s Broadcasting Station at Hulun Buir coming up. Most interesting is its short-living enhancement just after sunrise at Hailar in China’s Inner Mongolia, squeezed at their borders to Russia and Mongolia.

This greyline enhancement can be observed regularily on frequencies under, say, 10 MHz: at sunrise at the transmitter’s site, first the F2 layer of the ionosphere is building up, being responsible of the signal of, here, about 5 dB. The lower and attenuating D-layer needs a bit more time to build up, leaving a short-living window for an enhanced signal.

This is to encourage also other HF aficionados to to use this technique.

Receiver: Winradio’s Excalibur Sigma
Antenna: active vertical dipole (2 x 5 m) MD300DX
Software: V3 by Simon Brown, G4ELI, QtiPlot and DX Atlas

TDoA Direction Finding: First Experiences on the KiwiSDR Net

6465_5

With some iteration, as described in the PDF, the former unknown site of a CIS-12 transmission on 6.465 kHz has been disclosed as the Russian Navy from Baltysk, Kaliningrad.

The stunning direction finding tool on the KiwiSDR net has hit the community. Most people are enthusiastic about the new horizons, some some smart people had opened for free.

A few people, however, reported some disappointment as they couldn’t pinpoint each and every transmitter with expected high precision.

To avoid this disappointment, you have to know what you are doing. The TDoA tool for direction finding indeed delivers automatically stunning results. But you have to think a bit about the setup, and also do some iteration.

I wrapped up my first experiences with TDoA in this PDF. You may simply download it by double-clicking the link, and open it in a PDF reader. It consists of 22 pages and 37 instructive figures. I greatly stressed the practical part of direction finding with this tool – with 13 explicit case studies from 2,6 MHz to 15,6 MHz.

The idea is to have more fun by getting the most reliable results.

SDR Console V3: New and indispensable Software

V3_Dimtsi

“Living Sonagram”: On the right window, you see a part of a 24 h recording at 6,1 MHz bandwidth (ca. 2 TB) with 1 line/second. Tagged is the sign on of Dimtsi Hafash which is received by the undocked “Receive” panel of V3’s GUI. At the bottom: signal strength on 7180 kHz over 24 hours reveals e.g. s/on, s/off and fade in.

Just a small note on a real real big event: Simon Brown, G4ELI, has published V3 of his indispensable SDR Console software on June 18th, 2018 – after three and a half years of heavy coding. Download it here and donate. Or vice versa.

V3 is a quite universal software for most SDRs on the market. For all, it provides the same graphical user interface (GUI) and the same functions (plus those specific to some devices).

All

DXer’s delight: On top the sonagram to visually catch signals (here: JDG from Diego Garcia; tagged). Bottom, from left to right: receive GUI for fine tuning, decoder W-Code showing “JDG”, below this “Playback” panel for controlling the recording (back/forward, e.g.), and on the right a database.

There are many unique functions and modules which will take DXing with SDRs to the next step. For now, let me mention just two of them:

  • 24 parallel demodulators within the SDR’s bandwidth – fully independent in e.g. mode, bandwidth and AGC to receive, record and decode 24 signals/channels in parallel.
  • a sophisticated File Analyser  which presents a recorded band as “living sonagram” – whre you see and click to a signal which then is played via the basic GUI

6pane

Up to six parallel demodulators can be seen on the main screen (from up to 24 possible).

 

1520

1520 kHz from 18:00 to 05:00 UTC (local SR/SS: 19:43/02:58 UTC) with 100 Hz bandwidth and 0,0031 Hz resolution (= +65 dB over 10 kHz!) reveals at least 27 stations and their offsets.

Each of these just two features mentioned will open new worlds for DXing and even serious professional monitoring. I will be happy to come back to some applications of V3 in more detail.

Thank you very much, Simon, for providing this excellent tool for free!

4800

4’800 kHz: First CNR1 with sign on at 20:15 UTC and fade out, then AIR Hyderabad with the same, but s/on around 00:06 UTC.

 

7435kHz

You may export levels over time on one frequency or level over frequencies at a given time. This graph visualizes the activity on 7435 kHz with 86’400 levels (on per second over 24 h). The data had been exported to QtiPlot for further investigation.

Airspy HF+: What you hear, is what you get

 

 

This slideshow requires JavaScript.

It has been dubbed “game changer” and indeed, the Airspy HF+ is a completely other animal of software-defined radio, or SDR. Developed by Youssef Touil plus team and produced by ITEAD, it sells for just US-$ 199 right from factory at Shenzhen, China. This is considered the middle class of SDRs, starting with cheap USB sticks under 10 US-$ and scratching the mark of nearly US-$ 5.000 with Winradio’s WR-G39DDC. This one also marks the transition zone from what even an engaged hobbyist allows himself to spend to the truly professional receivers of e.g. Rohde & Schwarz and Plath. To make it clear: You may achieve professional results at each price tag, even from an RTL & its clones, as Carl Laufer’s excellent blog shows almost daily.

The Serious HF-DXers in mind

Airspy HF+ has been developed with the serious HF (shortwave) listener in mind. In this field it sets new standards regarding sensitivity, dynamic range and noise. Its stunning performance is achieved by a revolutionary approach and a careful layout of the hardware, housed in a sturdy metal case.

I don’t want to add another explanation of this concept (my test report will appear in 1Q/2018 in “Funkamateur“) but just offering the pure stuff. Some first twelve audio examples should give you a truly hands-on impression to answer the one and only question: How loud does this animal roar?
Therefore, I compared about 100 often vastly different situations on HF between Elad’s FDM-S2 (US-$ 525) and Airspy HF+. From this collection, I carefully selected some first twelve examples to cover the needs of the casual listener as well as the hard-core DXer.

All audio clips were recorded in parallel with a 20 m quad loop as antenna, feeding a professional 1:2 HF splitter by Heros. Software used was free SDR-Console V3 by Simon Brown – thanks.

Dare to make use of your own understanding

First, you read a description of the case, followed by a recording with FSM-S2 and then by Airspy HF+. Each of both examples has been recorded with exactly the same bandwidth, mode, AGC etc. which had been optimized for that situation. You must listen to these audio clips with headphones to scrutinize the mostly very small differences. Aim you ear towards fading, noise and intelligibility.
This is not a traditional test, where the master of ceremonies masticates the results for you. It’s for the truly demanding DXer, “to make use of your own understanding” (Kant, 1784). Just a hint: weak stations make the difference!

Fasten your Headphones: The Examples

The audio examples are roughly sorted from easy to difficult signals. They were made in the first week of December, 2017.

Radio Sultanate of Oman, Seeb/Oman
15.140 kHz, 100 kW, AM, 5.350 km, 14:10 UTC, strong/free channel, SAM, 10 kHz bandwidth. Keep an ear on noise and slight fading!

 

Xinjiang People Broadcasting Station, ÜrümqiChina
4.500 kHz, 50 kW, AM, 5.500 km, 14:24 UTC, fair to good/free channel, SAM, 9 kHz bandwidth.

 

Bangla Desh Betar, Savar/Bangladesh
4.750 kHz, 100 kW, AM, 7.300 km, 14:29 UTC, fair/free channel, SAM, 9 kHz bandwidth.

 

Xizang People’s Broadcasting Station, “Holy Tibet”, Lhasa/China
6.025 kHz, 100 kW, AM, 6.850 km, 16:00 UTC, fair/strong broadcaster 5 kHz up, ECSS-L, 2,8 kHz.

 

Bangkok VOLMET, Bangkok/Thailand
6.676 kHz, 10 kW, USB, 8.800 km, 16:10 UTC, fair/free channel, USB, 3 kHz bandwidth.

 

Gander VOLMET, Gander/Newfoundland Canada
10.051 kHz, 10 kW [?], USB, 4.400 km, 15:20 UTC, weak to fair at fade-in/free channel, USB, 2,8 kHz bandwidth.

 

Myanma Radio, Yangoon/Myanmar
5.985 kHz, 50 kW, AM, 8.250 km, 01:00 UTC, weak to fair/interference from upper channel, ECSS-L, 5,5 kHz bandwidth.

 

Radio Aparecida, Aparecida/Brazil
6.135 kHz, 10 kW, AM, 9.900 km, 00:30 UTC, fair/free channel, SAM, 3,5 kHz bandwidth.

 

Time Signal Station CHU, Barrhaven/Ontario Canada
3.330 kHz, 3 kW, USB with carrier, 5.900 km, 06:00 UTC, fair/fsome interference from digital station above, USB, 3 kHz bandwidth.

 

Time Signal Station BPM, Shaanxi/China
15.000 kHz, 20 kW, AM, 7.750 km, 09:00 UTC, weak/free channel, SAM, 5 kHz bandwidth. Occasionally echo from mixing short/long path, some CW echo (long path) is running into the next via short path.

 

China Radio International, Ürümqi/China
1.521 kHz, 500 kW, AM, 5.500 km, 13:00 UTC, weak at fade-in/free channel, SAM, 6 kHz bandwidth.

 

Auckland VOLMET, Auckland/New Zealand
6.679 kHz, 5 kW, USB, 25.800 km (long path!), 07:20 UTC, very weak/free channel, USB, 3,6 kHz bandwidth. Here headphones are a must!

 

 

Offset/SNR: Some Ideas for Medium Wave DXing

Offset_5

Offset-DXing “on the fly” shows four different stations (spectrogram) on one nominal channel, namely 801 kHz. The window is baout 30 Hz wide and shows the carrier on HF level.

Although I use Simon Brown’s excellent software SDR Console V3 for years, I only now discovered a feature, being most valuable for medium wave DX.

Nearly each medium wave channel is populated by a couple of stations which mostly have a slight difference from each other, called offset. This often is specific to specific stations. It even reveals stations too weak to be heard. Software V3 will show these carriers of HF level during normal listening, being live or from an HF recording.

Read MW-Notes, to get some information on “how-to” on 6 pages, with 12 screenshots. There you will find also a hint for a method with even much more resolution (but: not “on the fly”) plus some information on how to measure signal strength and estimate/calculate the SNR of speech/music, rather than that of just the carrier.

You have to distinguish between absolute and relative frequency accuracy; the first is best achieved with a GPS-disciplined oscillator, the letter the normal case.

P.S. I started with these things back in 1997 with an evaluation board from Motorola, followed by sound card & software on audio level (“Soundtechnology zeigt Signale: Sieh’, wie es klingt!”, funk magazine 6/1998), to be continued on HF level from 2006, first with RFSpace’s groundbreaking SDR-14. Three years later, I published a survey of each and every 9- and 10-kHz-channel on medium wave by this method. After Apple closed their web service, these pages had gone astray, and the information is now not up-to-date anymore. State-of-the-Art now is the method described in the paper.

Medium Wave: Ex oriente DX

Medium wave saison has started, and am I trying to make the best out of it. Conditions are fascinating different from day to day, and even from minute to minute. With mainly focusing on “East of Suez”, with some other in between, please find some 50+ audio logs below. Click “Read More” button at the end, to expand the list to full length.
I am very much indebted to Christoph, OE2CRM, who with his very special mixture of charme and nuisance more or less forced me to explore a bit more of this frequency range 😉 First of all, I was and still am attracted by his outstanding logs which had been held impossible in Mid-Europe in the last decades.
I am using an Elad FDM-S2 at a wire loop of 20 m circumference with Wellbrook’s Large Aperture Loop Amplifier ALA100LN plus 7th order elliptic low-pass filter (1,5 MHz) by Heros to avoid any spilling over from HF (mainly that of: Radio Romania International); software used V3 from Simon Brown.

BEL3_Fishery_FRS_1143kHz

Part of the QSL from “Fishery Radio Station” (Taiwan Chü Yuyeh Kuangpo Tientai), BEL3, 100 kW, 1143 kHz, received September 25, 2017, 19:00 UTC. 謝謝, Station Manager Jin Mey Ju!

1700 kHz USA-Florida  WJCC Radio Mega in French, Miami Springs, 10 kW, 10-OCT-2017, 02:00 UTC.  Several IDs (e.g. in French) of this multi-cultural broadcaster.

 

1584 kHz G  Punjab Radio, in Hindi/English, London, 2 kW, 15-AUG-2017, 20:00 UTC. ID.

 

1566 kHz KOR  HLAZ FEBC in Korean, Jeju, 250 kW, 26-SEP-2017, 17:00 UTC

 

1566 kHz HOL  Vahon Hindustani Radio in Hindi, Den Haag, 1 kW, 23-AUG-2017, 22:00 UTC. ID in Hindi.

 

1557 kHz TWN  RTI iLoveMusic in Chinese, Kouhu, 300 kW, 20-SEP-2017, 16:55 UTC.

 

1550 kHz ALG  Saharawi Arab Democratic Republic National Radio in Arabic, Tindouf, 50 kW, 27-SEP-2017, 21:01 UTC. ID: “RASD punto [?] info …” & in Arabic

Read more

« Older Entries