Medium Wave: Signals May tell sunris/Sunset at their transmitter’s site

The two stronger carriers (Romania left, Algeria right) exhibit Doppler-shifted scatter; see text for a more detailed explanation.

During my expeditions into the thicket of mediumwave offsets, I bumped into pictures like that at the top. In the lower part of the screenshot, you see two carriers mit seahorse-like structures looking to the right. In the evening, they look towards the West.

This is one of the several effects which can be seen at local sunrise/sunset. Here, the carrier gets “clouded” and show frequency changes. These effects are associated with Doppler shift (moving of ionospheric patches/layers) as well as scattering caused by irregularities of the ionosphere, most notably Travelling Ionospheric Disturbances, or TID. Whereas the Doppler shift, by vertical moving of reflecting layers like combining of F1- and F2-layer to one and lower F-layer when approaching darkness, is comparatively small, high wind speeds in these regions can cause a much faster horizontal movement of such regions. This, in turn, may cause a Doppler shift of about 1Hz or even higher in the medium wave range.

The Figure at the top demonstrates this effect at two transmitters on 1422kHz, namely SRR Radio România Actualități from Râmnicu Vâlcea/Olănești (sunrise 05:55 UTC/sunset 15:12 UTC; distance 1433km) and Radio Coran/Radio UFC/Radio Culture/Chaîne 3 from Ouled Fayet/Algeria (sunrise 06:58 UTC/sunset 17:00 UTC; distance 1840 km). Seen from midnight, sunrise first occurs at the Romanian transmitter, followed by the Algerian one with the seahorse-like pattern of the scatter towards the higher frequencies. Around each local sunset, first Romania sees darkness, followed by Algeria. Here, the scatter pattern turns towards the lower frequencies. In the insert at the right, contrast has been sharpened to additionally reveal a split-up of these carriers due to propagation into two paths.

This effect often helps to determine the local sunrise/sunset of a carrier. I marked what presumably is the carrier of MBC Radio 1 from Matiya/Malawi, sunrise 03:22 UTC; listed 02:00 to 22:00 UTC, but obviously on a 24 hours’ service this Tuesday.

Both Figures at the bottom try for some detective work without knowing specific offsets (because not available) but relying only on schedule and the above mentioned propagational effect. Crime scene takes place on 1233kHz, where we want to scrutinize two channels, one on 1232,9937 kHz, the other on 1232,9951kHz.

Distinctive scatter, associated with local sunrise at the transmitter, provides a strong hint towards the location.

The s/off- and the s/on pattern match that of Chinese National Radio #17’s Kazakh service. Incidentally, sunrise takes place in Qinghe at 01:42 UTC, and in Boertala at 02:04UTC – next Figure. Boertala is listed with 10kW (stronger signal), Qinghe with 1kW. Unfortunately, the f/out time of other CNR17 transmitters on this channel is mostly covered by phase noise from Rádio Dechovka in the Czech Republic and Absolute Radio in the United Kingdom.

Some CNR17 locations and the terminator during sunrise in Boertala, see text. Visualized with free Simon’s World Map.

Here I am indebted to Jens Mielich, Head of the ionosonde at Juliusruh/Germany, who was so kind to comment on this observation. According to him, the observed Doppler shift of 1Hz on 1422kHz should have been caused by a refracting medium, moving at an (angular) speed of roughly 105m/s. At Juliusruh, he observed e.g., an ionospheric drift of 311m/s±93m/s from East towards West on January 19, 2021 at 04:19 UTC: “You will get a positive Doppler shift during a West/North drift, and a negative one at East/South drift.” He adds that further investigations on a more longer time series are needed.


One comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s