Monthly Archives: August 2016

PropLab 3.1: How Propagation really works



The software’s unique feature is 3D raytracing, showing an anatomy of propagation (see text).

HF propagation software seems to be full of mysteries. But its all about modeling physics. There are several models around, the most prominent surely is VOACAP, followed by ASAPS. VOACAP comes in very many different tastes like e.g. PropMan 2000 or ACE. It often has been coined to be the “Gold Standard” among hams and professionals as well. VOACAP gives reliable results on a statistical base for a month, whereas ASAPS returns propagation based on the current conditions of a day. It also gives propagation for an aircraft en route during its flight and takes at least a bit care of multi-path propagation which may degrade digital modes. Both work offline as online, and they are fast.

[Einen ausführlichen deutschsprachigen Test mit vielen Screenshots und Beispielen habe ich in der Januar- Ausgabe 2017 der Fachzeitschrift FUNKAMATEUR veröffentlicht.]

PropLab is giving you a much smarter view on what is really happening on a specific day and time at a specific path or area. It relies on the International Reference Ionosphere (IRI 2007) and uses the ray tracing technique. In short, PropLab is automatically fetching all relevant space weather data (not just sunspots) from scientific sources of the internet to model the ionosphere with its different “layers”.

You then give in your path, antenna etc. in a well-supported way. After having started “ray tracing”, PropLab lets refract rays at exactly this ionosphere with its high granularity and some real-world effect like tilts of layers which will result in e.g. propagation off the great circle. It will also beautifully show effects like focusing and gray line propagation, including Pedersen’s long ranging ray with time resolution up to one second – rather than one hour as that of VOACAP.

Read more

Audio Log and Google Maps

This is just a first test: I wanted to embed audio logs of some Utility Stations on a Google Map. This is possible only with MP4 files (video) as a link to You Tube. Several kinds of videos are tried: some with HF spectrum and sonogram giving additional information about the signal quality, some with a more static background to optimize file size.

There had been some difficulties to place the spots precisely. It worked fine for e.g. Deutsche Luftwaffe DHM91 (German Air Force) where you see the antennas at satellite view. But it failed a bit for e.g. US Air Force Diego Garcia, where the mark splashed right into the Indian Ocean …

Have fun in clicking to these 15 SSB stations! They should encourage you also to tune into these bands! They had all been received in Northern Germany with ELAD’s FDM-S2 and a quadloop of 20 m circumference.

Critics, suggestions and alternatives to this approach wanted.